
J Mak NEMO notes

Julian Mak

Oct 25, 2023

CONTENTS:

1 NEMO compilation notes 3
1.1 NEMO 3.6 (stable) + XIOS 1.0 . 3
1.2 NEMO 3.7/4.0 + XIOS 2.0 . 9
1.3 NEMO 4.0 (beta) + XIOS 2.5 . 15
1.4 NEMO 4.2 + XIOS 2.5 . 21
1.5 Oxford ARC compilation . 23
1.6 HKUST HPC2 compilation . 32
1.7 HKUST HPC3 compilation . 43
1.8 Other packages . 52

2 Other NEMO notes 61
2.1 Adding code to NEMO . 61
2.2 Other NEMO packages . 61
2.3 GYRE: rotated gyre model . 63
2.4 ORCA: global configuration . 64
2.5 UNAGI: custom channel model . 64
2.6 pyCDFTOOLS . 67

3 GEOMETRIC outline 69
3.1 Advection . 70
3.2 Source . 70
3.3 Dissipation . 70
3.4 Diffusion . 71

4 Misc. content 73
4.1 Python / Anaconda notes . 73
4.2 sphinx notes . 76
4.3 Git commands . 76

Bibliography 79

i

ii

J Mak NEMO notes

Homebrew collection of NEMO (≥ v3.6) related content, existing here primarily to remind myself of code details.
Includes compilation notes, analyses codes, and misc. other topics. Appropriate disclaimers in the individual sections
themselves.

I can be contacted at jclmak@ust.hk regarding modifying / adding to the content here.

• If you are here for the GEOMETRIC codes that I maintain, try this repository.

CONTENTS: 1

mailto:jclmak@ust.hk
https://github.com/julianmak/GEOMETRIC_code

J Mak NEMO notes

2 CONTENTS:

CHAPTER

ONE

NEMO COMPILATION NOTES

These are just my own notes for compiling NEMO on a variety of clusters and computers in a public place largely so
I can look it up as long as I have internet; if it happens useful for you, great! Please consult the NEMO page for the
official details.

While it is fairly straightforward on a supported cluster/supercomputer (e.g. try NOCL ARCHER guide) it can be a bit
temperamental on a local machine largely down to library and compiler compatibility. The following notes are what
I did to get XIOS and NEMO compiling and running, and will display commands with gcc4.9 compilers (which is
my default for other reasons). Extra things that need to be modified for other compilers I have tested will be given
accordingly (see the top of the individual pages as to which compilers I have tested the notes with).

I added the following to my ~/.bashrc so as to override the default compilers I had (change these if need be):

export CC=/usr/bin/gcc-4.9
export CXX=/usr/bin/g++-4.9
export FC=/usr/bin/gfortran-4.9
export F77=/usr/bin/gfortran-4.9
export CPP=/usr/bin/cpp-4.9

1.1 NEMO 3.6 (stable) + XIOS 1.0

Tested with

• gcc4.9, gcc5.4 on a linux system

• gcc4.8 on a Mac (El Capitan OSX 10.11)

The assumption here is that the compiler is fixed and the packages (e.g., NetCDF4 and a MPI bindings) are configured
to be consistent with the compilers. See here to check whether the binaries exist, where they are, and how they might
be installed separately if need be. All the #CHANGE ME highlighted below needs be modified to point to the appropriate
paths or binaries (soft links with ln -s are ok).

The instructions below uses gcc4.9 for demonstration (modifications with gcc5.4 as appropriate). I defined some
extra variables on a Linux machine:

export $BD=/home/julian/testing/gcc4.9-builds # CHANGE ME

export C_INCLUDE_PATH=$BD/install/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$BD/install/include:$CPLUS_INCLUDE_PATH
export LIBRARY_PATH=$BD/install/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$BD/install/lib:$LD_LIBRARY_PATH

3

https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/guide.html
https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html
https://nemo-nocl.readthedocs.io/en/latest/work_env/archer.html

J Mak NEMO notes

You shouldn’t need to do the above if the packages are forced to look at the right place (e.g. via -L and/or -I flags
with path to libraries and include files respectively). Not all of these are necessary depending on whether you choose
to build/have static or dynamic libraries, and the LD_LIBRARY_PATH seems to sort out a lot of problems with linking
libraries.

On a Mac done through anaconda the above was not necessary. My understanding is that setting these variables might
not actually do anything unless an option is specifically enabled in Xcode.

1.1.1 XIOS 1.0 (svn v703)

To use NEMO you probably do need XIOS to do the I/O. The instructions here follow the one given in the XIOS
instructions with any errors that arise. A useful site to search for XIOS related errors may be found on the XIOS user
mailing list.

Here XIOS1.0 is used with NEMO3.6 for compatibility reasons. For the purposes here I created a folder called XIOS
and used svn to get XIOS1.0 (which is going to be XIOS/xios1.0):

mkdir XIOS
cd XIOS
svn checkout -r 703 http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-1.0 xios-
→˓1.0

To get XIOS to compile, the compilers and packages need to be pointed to first, via modifying files in arch. Since I
am using gcc, I did the following just to make a fresh copy:

cd xios1.0/arch
cp arch-GCC_LINUX.env arch-GCC_local.env
cp arch-GCC_LINUX.fcm arch-GCC_local.fcm
cp arch-GCC_LINUX.path arch-GCC_local.path

The *.env file specifies where HDF5 and NetCDF4 libraries live. The *.fcm file specifies which compilers and
options to use. The *.path file specifies which paths and options to include. My files look like the following:

arch-GCC_local.env

export HDF5_INC_DIR=/usr/local/include # CHANGE ME
export HDF5_LIB_DIR=/usr/local/lib # CHANGE ME

export NETCDF_INC_DIR=/usr/local/include # CHANGE ME
export NETCDF_LIB_DIR=/usr/local/lib # CHANGE ME

You could get an idea where the HDF5 and NetCDF4 directories are by doing which h5copy and which nc-config
(assuming these are on $PATH), which should give you a directory/bin, and it is the directory part you want. If
you did install the libraries somewhere else as in other packages, say, then make sure the which commands are pointing
to the right place.

arch-GCC_local.fcm

##
################### Projet XIOS ###################
##

%CCOMPILER /usr/local/bin/mpicc # CHANGE ME
%FCOMPILER /usr/local/bin/mpif90 # CHANGE ME

(continues on next page)

4 Chapter 1. NEMO compilation notes

http://forge.ipsl.jussieu.fr/ioserver
http://forge.ipsl.jussieu.fr/ioserver/wiki/documentation
http://forge.ipsl.jussieu.fr/ioserver/wiki/documentation
https://forge.ipsl.jussieu.fr/mailman/private.cgi/xios-users/
https://forge.ipsl.jussieu.fr/mailman/private.cgi/xios-users/

J Mak NEMO notes

(continued from previous page)

%LINKER /usr/local/bin/mpif90 # CHANGE ME

%BASE_CFLAGS -ansi -w
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

%BASE_INC -D__NONE__
%BASE_LD -lstdc++

%CPP cpp-4.9 # CHANGE ME
%FPP cpp-4.9 -P # CHANGE ME
%MAKE make

Check the MPI locations and versions by doing which mpicc and mpicc --version say. If they are the right ones
you could just have mpicc instead of the full path as given above. MPI bindings are used here to avoid a possible error
that may pop up in relation to the build trying to find mpi.h. The gmake command was swapped out by the make
command (I don’t have cmake on the laptop).

Note: For gcc5.4 and maybe newer versions, doing just the above when compiling leads to a whole load of errors
about clashing in C++:

.../include/boost/functional/hash/extensions.hpp:69:33: error: ‘template<class T, class␣
→˓A> std::size_t boost::hash_value’ conflicts with a previous declaration
std::size_t hash_value(std::list<T, A> const& v)

^

Adding -D_GLIBCXX_USE_CXX11_ABI=0 to %BASE_CFLAGS fixes these.

arch-GCC_local.path

NETCDF_INCDIR="-I$NETCDF_INC_DIR"
NETCDF_LIBDIR="-Wl,'--allow-multiple-definition' -L$NETCDF_LIB_DIR"
NETCDF_LIB="-lnetcdff -lnetcdf"

MPI_INCDIR=""
MPI_LIBDIR=""
MPI_LIB=""

HDF5_INCDIR="-I$HDF5_INC_DIR"
HDF5_LIBDIR="-L$HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lhdf5 -lz"

The above has all the OASIS (the atmosphere / ocean coupler) keys removed. I added the -Wl,
'--allow-multiple-definition' key for reasons I don’t remember anymore. . .

Now it should be ready to compile. Assuming the current directory is xios1.0/arch:

1.1. NEMO 3.6 (stable) + XIOS 1.0 5

J Mak NEMO notes

cd ../
./make_xios --full --prod --arch GCC_local -j2 |& tee compile_log.txt

The -j2 option uses two processors to build. The tee command is to keep logs of potential errors (the |& is short for
2>&1 |) for debugging errors that may arise.

Note: If you get something like

/home/julian/testing/nemo-6800/xios-703/xios-1.0/inc/netcdf.hpp:20:26: fatal error:␣
→˓netcdf_par.h: No such file or directory
include <netcdf_par.h>

^
compilation terminated.
fcm_internal compile failed (256)
/home/julian/testing/nemo-6800/xios-703/xios-1.0/Makefile:1620: recipe for target
→˓'inetcdf4.o' failed

then it is probably because NetCDF4 was not built as parallel. There is a actually a copy of the file in ./extern/
src_netcdf4/netcdf_par.h, and it could be pointed to by looking into bld.cfg:

bld::tool::cflags %CFLAGS %CBASE_INC -I${PWD}/extern/src_netcdf -I${PWD}/extern/boost/
→˓include -I${PWD}/extern/rapidxml/include -I${PWD}/extern/blitz/include

where src_netcdf should be changed to src_netcdf4.

Note: If you get something like

libhdf5.a(H5PL.o): undefined reference to symbol 'dlclose@@GLIBC_2.2.5'

then this suggests that the HDF5 library that is being called is built as a static and/or not shareable library. In this
case adding the -ldl flag to HDF5_LIB in arch-GCC_local.path should work. Or if you want to you can recompile
HDF5 as a shareable library; see other packages on how you might go about doing this.

It should work and takes around 5 mins to compile for me. The main end result is are binaries in xios1.0/bin/ which
NEMO will call.

Note: Do ldd bin/xios_server.exe (or wherever xios_server.exe lives) to make sure the libraries linked
to it are the intended libraries. XIOS may still work if the NetCDF versions are ok, but if not, go back and define
LD_LIBRARY_PATH and other variables accordingly; see above.

xios_server.exe is one of the other binaries built from compiling but is not required for small runs on a laptop. For
its use on a cluster see for example the instructions on the NOCL ARCHER guide.

6 Chapter 1. NEMO compilation notes

https://nemo-nocl.readthedocs.io/en/latest/work_env/archer.html

J Mak NEMO notes

1.1.2 NEMO 3.6 (svn v6800)

Check out a version of NEMO. I have another folder separate to the XIOS folders to contain the NEMO codes and
binaries:

mkdir NEMO
cd NEMO
svn checkout -r 6800 http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk nemo3.6-6800

This checks out version 6800 (NEMO 3.6) and dumps it into a folder called nemo3.6-6800 (change the target path to
whatever you like).

Note: svn checkout https://forge.ipsl.jussieu.fr/nemo/svn/NEMO/releases/release-3.6
nemo3.6 would pull the official version

A similar procedure to specify compilers and where XIOS lives needs to be done for NEMO. Again, because of the
compilers I am using:

cd nemo3.6-6800/NEMOGCM/ARCH
cp OLD/arch-gfortran_linux.fcm ./arch-gfortran_local.fcm

None of the fcm files associated with gfortran actually worked for me out of the box so here is my build of it (click
HERE for a detailed log of how I got to the following):

gfortran_local.fcm

generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags
AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%NCDF_HOME /usr/local # CHANGE ME

%XIOS_HOME /home/julian/testing/gcc4.9-builds/XIOS/xios-1.0 # CHANGE ME

%CPP cpp-4.9 # CHANGE ME
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I%NCDF_HOME/include
%NCDF_LIB -L%NCDF_HOME/lib -lnetcdf -lnetcdff -lstdc++

(continues on next page)

1.1. NEMO 3.6 (stable) + XIOS 1.0 7

J Mak NEMO notes

(continued from previous page)

%FC mpif90 # CHANGE ME
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

The main changes are (see here for an attempt at the reasoning and a log of errors that motivates the changes):

• added %NCDF_HOME to point to where NetCDF lives

• added %XIOS_* keys to point to where XIOS lives

• added %CPP and flags, consistent with using gcc4.9

• added the -lnetcdff and -lstdc++ flags to NetCDF flags

• using mpif90 which is a MPI binding of gfortran-4.9

• added -cpp and -ffree-line-length-none to Fortran flags

• swapped out gmake with make

Note: It might be worthwhile doing the following first:

cd ../CONFIG/
./makenemo -j0 -r GYRE -n GYRE_testing -m gfortran_local

Then, add key_nosignedzero to the end of /GYRE_testing/cpp_GYRE_testing.fcm (see note at the bottom of
the page). -j0 does all the folder creation and copying but not the compile step.

To compile a configuration (using the GYRE config):

cd ../CONFIG/
./makenemo -j2 -r GYRE -n GYRE_testing -m gfortran_local |& tee compile_log.txt

This uses two processors, with GYRE as a reference, builds a new folder called GYRE_testing, with the specified
architecture file, and outputs a log.

Note: The -r GYRE flag here only needs to be done once to create an extra folder and add GYRE_testing to cfg.txt.
The subsequent compilations should then read, e.g., ./makenemo -n GYRE_testing -m gfortran_local.

Check that it does run with the following:

cd GYRE_testing/EXP00
mpiexec -n 1 ./opa

This may be mpirun instead of mpiexec, and -n 1 just runs it as a single core process. Change nn_itend = 4320
in nn_itend = 120 to only run it for 10 days (rdt = 7200 which is 2 hours). With all the defaults as is, there should

8 Chapter 1. NEMO compilation notes

J Mak NEMO notes

be some GYRE_5d_*.nc data in the folder. You can read this with ncview (see the ncview page or, if you have sudo
access, you can install it through sudo apt-get install ncview), bearing in mind that this is actually a rotated
gyre configuration (see the following NEMO forge page or search for gyre in the NEMO book).

Note: My run actually crashed immediately. Looking into ocean.output and searching for E R R O R shows that
key_nosignedzero needed to be added to /GYRE_testing/cpp_GYRE_testing.fcm. Rebuilding with the key then
works fine.

Note: If your installation compiles but does not run with the following error

dyld: Library not loaded: @rpath/libnetcdff.6.dylib
Referenced from: /paths/./nemo
Reason: no suitable image found. Did find:
/usr/local/lib/libnetcdff.6.dylib: stat() failed with errno=13

then it is not finding the right libraries. These could be fixed by adding the -Wl,-rpath,/fill me in/lib flag to
the relevant flags bit in the *.fcm files (or possibly in XIOS the path and/or env) to specify exactly where the libraries
live. This can happen for example on a Mac or if the libraries are installed not at the usual place.

Note: One infuriating problem I had specifically with a Mac (though it might be a gcc4.8 issue) is that the run does not
get beyond the initialisation stage. Going into ocean.output and searching for E R R O R shows that it complained
about a misspelled namelist item (in my case it was in the namberg namelist). If you go into output.namelist.dyn
and look for the offending namelist is that it might be reading in nonsense. This may happen if the comment character
! is right next to a variable, e.g.

ln_icebergs = .true.!this is a comment

Fix this by adding a white space, i.e.

ln_icebergs = .true. !this is a comment

1.2 NEMO 3.7/4.0 + XIOS 2.0

Tested with

• gcc4.9, gcc5.4 on a linux system

• gcc4.8 on a Mac (El Capitan OSX 10.11)

This is the version I first implemented GEOMETRIC in, which is a development version I guess (?) that eventually led
to NEMO 4.0. The code structure largely follows NEMO 3.6 but the commands are slightly different.

If you get errors that are not documented here, see if the XIOS1.0 NEMO3.6 page contain the relevant errors.

The assumption here is that the compiler is fixed and the packages (e.g., NetCDF4 and a MPI bindings) are configured
to be consistent with the compilers. See here to check whether the binaries exist, where they are, and how they might
be installed separately if need be. All the #CHANGE ME highlighted below needs be modified to point to the appropriate
paths or binaries (soft links with ln -s are ok).

The instructions below uses gcc4.9 for demonstration (modifications with gcc5.4 as appropriate). I defined some
extra variables on a Linux machine:

1.2. NEMO 3.7/4.0 + XIOS 2.0 9

http://cirrus.ucsd.edu/~pierce/software/ncview/index.html
http://forge.ipsl.jussieu.fr/nemo/doxygen/node109.html?doc=NEMO
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf

J Mak NEMO notes

export $BD=/home/julian/testing/gcc4.9-builds # CHANGE ME

export C_INCLUDE_PATH=$BD/install/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$BD/install/include:$CPLUS_INCLUDE_PATH
export LIBRARY_PATH=$BD/install/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$BD/install/lib:$LD_LIBRARY_PATH

You shouldn’t need to do the above if the packages are forced to look at the right place (e.g. via -L and/or -I flags
with path to libraries and include files respectively). Not all of these are necessary depending on whether you choose
to build/have static or dynamic libraries, and the LD_LIBRARY_PATH seems to sort out a lot of problems with linking
libraries.

On a Mac done through anaconda the above was not necessary. My understanding is that setting these variables might
not actually do anything unless an option is specifically enabled in Xcode.

1.2.1 XIOS 2.0 (svn v1322)

Do the following:

mkdir XIOS
cd XIOS
svn checkout -r 1322 http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk xios-2.0

Note: svn checkout http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-2.0
xios-2.0 also works with instructions below.

To get XIOS to compile, the compilers and packages need to be pointed to first, via modifying files in arch. Since I
am using gcc, I did the following just to make a fresh copy:

cd xios2.0/arch
cp arch-GCC_LINUX.env arch-GCC_local.env
cp arch-GCC_LINUX.fcm arch-GCC_local.fcm
cp arch-GCC_LINUX.path arch-GCC_local.path

The *.env file specifies where HDF5 and NetCDF4 libraries live. The *.fcm file specifies which compilers and
options to use. The *.path file specifies which paths and options to include. My files look like the following:

arch-GCC_local.env

export HDF5_INC_DIR=/usr/local/include # CHANGE ME
export HDF5_LIB_DIR=/usr/local/lib # CHANGE ME

export NETCDF_INC_DIR=/usr/local/include # CHANGE ME
export NETCDF_LIB_DIR=/usr/local/lib # CHANGE ME

You could get an idea where the HDF5 and NetCDF4 directories are by doing which h5copy and which nc-config
(assuming these are on $PATH), which should give you a directory/bin, and it is the directory part you want. If
you did install the libraries somewhere else as in other packages, say, then make sure the which commands are pointing
to the right place.

arch-GCC_local.fcm

(continues on next page)

10 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

##
################### Projet XIOS ###################
##

%CCOMPILER /usr/local/bin/mpicc # CHANGE ME
%FCOMPILER /usr/local/bin/mpif90 # CHANGE ME
%LINKER /usr/local/bin/mpif90 # CHANGE ME

%BASE_CFLAGS -ansi -w
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

%BASE_INC -D__NONE__
%BASE_LD -lstdc++

%CPP cpp-4.9 # CHANGE ME
%FPP cpp-4.9 -P # CHANGE ME
%MAKE make

Check the MPI locations and versions by doing which mpicc and mpicc --version say. If they are the right ones
you could just have mpicc instead of the full path as given above. MPI bindings are used here to avoid a possible error
that may pop up in relation to the build trying to find mpi.h. The gmake command was swapped out by the make
command (I don’t have cmake on the laptop).

Note: For gcc5.4 and maybe newer versions, doing just the above when compiling leads to a whole load of errors
about clashing in C++:

.../include/boost/functional/hash/extensions.hpp:69:33: error: ‘template<class T, class␣
→˓A> std::size_t boost::hash_value’ conflicts with a previous declaration
std::size_t hash_value(std::list<T, A> const& v)

^

Adding -D_GLIBCXX_USE_CXX11_ABI=0 to %BASE_CFLAGS fixes these.

arch-GCC_local.path

NETCDF_INCDIR="-I$NETCDF_INC_DIR"
NETCDF_LIBDIR="-Wl,'--allow-multiple-definition' -L$NETCDF_LIB_DIR"
NETCDF_LIB="-lnetcdff -lnetcdf"

MPI_INCDIR=""
MPI_LIBDIR=""
MPI_LIB=""

HDF5_INCDIR="-I$HDF5_INC_DIR"
(continues on next page)

1.2. NEMO 3.7/4.0 + XIOS 2.0 11

J Mak NEMO notes

(continued from previous page)

HDF5_LIBDIR="-L$HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lhdf5 -lz"

The above has all the OASIS (the atmosphere / ocean coupler) keys removed. I added the -Wl,
'--allow-multiple-definition' key for reasons I don’t remember anymore. . .

I went into bld.cfg, found the line

bld::tool::cflags %CFLAGS %CBASE_INC -I${PWD}/extern/src_netcdf -I${PWD}/
→˓extern/boost/include -I${PWD}/extern/rapidxml/include -I${PWD}/extern/blitz/
→˓include

and changed src_netcdf to src_netcdf4 (see XIOS1.0 stuff for the reason).

Now it should be ready to compile. Assuming the current directory is xios2.0/arch:

cd ../
./make_xios --full --prod --arch GCC_local -j2 |& tee compile_log.txt

The -j2 option uses two processors to build. The tee command is to keep logs of potential errors (the |& is short for
2>&1 |) for debugging the compiler issues that may arise. It should work and takes around 5 mins to compile for me.
The main end result is are binaries in xios2.0/bin/ which NEMO will call.

1.2.2 NEMO 3.7/4.0 (svn v8666)

Check out a version of NEMO. I have another folder separate to the XIOS folders to contain the NEMO codes and
binaries:

mkdir NEMO
cd NEMO
svn checkout -r 8666 http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk nemo3.7-8666

This checks out version 8666 (NEMO 3.7/4.0) and dumps it into a folder called nemo3.7-8666 (change the target path
to whatever you like). A similar procedure to specify compilers and where XIOS lives needs to be done for NEMO.
Again, because of the compilers I am using:

cd nemo3.7-8666/NEMOGCM/ARCH
cp OLD/arch-gfortran_linux.fcm ./arch-gfortran_local.fcm

None of the fcm files associated with gfortran actually worked for me out of the box so here is my build of it (click
HERE for a detailed log of how I got to the following):

gfortran_local.fcm

generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags

(continues on next page)

12 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%NCDF_HOME /usr/local # CHANGE ME

%XIOS_HOME /home/julian/testing/gcc4.9-builds/XIOS/xios-2.0 # CHANGE ME

%CPP cpp-4.9 # CHANGE ME
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I%NCDF_HOME/include
%NCDF_LIB -L%NCDF_HOME/lib -lnetcdf -lnetcdff -lstdc++
%FC mpif90 # CHANGE ME
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

The main changes are (see here for an attempt at the reasoning and a log of errors that motivates the changes):

• added %NCDF_HOME to point to where NetCDF lives

• added %XIOS_* keys to point to where XIOS lives

• added %CPP and flags, consistent with using gcc4.9

• added the -lnetcdff and -lstdc++ flags to NetCDF flags

• using mpif90 which is a MPI binding of gfortran-4.9

• added -cpp and -ffree-line-length-none to Fortran flags

• swapped out gmake with make

Then, I did (see NEMO 3.6 for the reason):

cd ../CONFIG/
./makenemo -j0 -r GYRE_PISCES -n GYRE_testing -m gfortran_local

Edit /GYRE_testing/cpp_GYRE_testing.fcm and replaced key_top with key_nosignedzero (does not compile
TOP for speed reasons, and make sure zeros are not signed). Then

./makenemo -j2 -n GYRE_testing -m gfortran_local |& tee compile_log.txt

1.2. NEMO 3.7/4.0 + XIOS 2.0 13

J Mak NEMO notes

This uses two processors, with GYRE as a reference, builds a new folder called GYRE_testing, with the specified
architecture file, and outputs a log.

Note: The -r GYRE flag here only needs to be done once to create an extra folder and add GYRE_testing to cfg.txt.
The subsequent compilations should then read, e.g., ./makenemo -n GYRE_testing -m gfortran_local.

Check that it does run with the following:

cd GYRE_testing/EXP00
mpiexec -n 1 ./opa

This may be mpirun instead of mpiexec, and -n 1 just runs it as a single core process. Change nn_itend = 4320
in nn_itend = 120 to only run it for 10 days (rdt = 7200 which is 2 hours). With all the defaults as is, there should
be some GYRE_5d_*.nc data in the folder. You can read this with ncview (see the ncview page or, if you have sudo
access, you can install it through sudo apt-get install ncview), bearing in mind that this is actually a rotated
gyre configuration (see the following NEMO forge page or search for gyre in the NEMO book).

Note: If your installation compiles but does not run with the following error

dyld: Library not loaded: @rpath/libnetcdff.6.dylib
Referenced from: /paths/./nemo
Reason: no suitable image found. Did find:
/usr/local/lib/libnetcdff.6.dylib: stat() failed with errno=13

then it is not finding the right libraries. These could be fixed by adding the -Wl,-rpath,/fill me in/lib flag to
the relevant flags bit in the *.fcm files (or possibly in XIOS the path and/or env) to specify exactly where the libraries
live. This can happen for example on a Mac or if the libraries are installed not at the usual place.

Note: One infuriating problem I had specifically with a Mac (though it might be a gcc4.8 issue) is that the run does not
get beyond the initialisation stage. Going into ocean.output and searching for E R R O R shows that it complained
about a misspelled namelist item (in my case it was in the namberg namelist). If you go into output.namelist.dyn
and look for the offending namelist is that it might be reading in nonsense. This may happen if the comment character
! is right next to a variable, e.g.

ln_icebergs = .true.!this is a comment

Fix this by adding a white space, i.e.

ln_icebergs = .true. !this is a comment

14 Chapter 1. NEMO compilation notes

http://cirrus.ucsd.edu/~pierce/software/ncview/index.html
http://forge.ipsl.jussieu.fr/nemo/doxygen/node109.html?doc=NEMO
https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf

J Mak NEMO notes

1.3 NEMO 4.0 (beta) + XIOS 2.5

Tested with

• gcc4.9, gcc5.4 on a linux system

• gcc4.8 on a Mac (El Capitan OSX 10.11)

The code structure in NEMO 4.0 and the use of some commands are slightly different (at least in v9925) and will be
documented below (please see the official NEMO annoucement for details). If you get errors that are not documented
here, see if the XIOS1.0 NEMO3.6 page contains the relevant errors.

The assumption here is that the compiler is fixed and the packages (e.g., NetCDF4 and a MPI bindings) are configured
to be consistent with the compilers. See here to check whether the binaries exist, where they are, and how they might
be installed separately if need be. All the #CHANGE ME highlighted below needs be modified to point to the appropriate
paths or binaries (soft links with ln -s are ok).

The instructions below uses gcc4.9 for demonstration (modifications with gcc5.4 as appropriate). I defined some
extra variables on a Linux machine:

export $BD=/home/julian/testing/gcc4.9-builds # CHANGE ME

export C_INCLUDE_PATH=$BD/install/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$BD/install/include:$CPLUS_INCLUDE_PATH
export LIBRARY_PATH=$BD/install/lib:$LIBRARY_PATH
export LD_LIBRARY_PATH=$BD/install/lib:$LD_LIBRARY_PATH

You shouldn’t need to do the above if the packages are forced to look at the right place (e.g. via -L and/or -I flags
with path to libraries and include files respectively). Not all of these are necessary depending on whether you choose
to build/have static or dynamic libraries, and the LD_LIBRARY_PATH seems to sort out a lot of problems with linking
libraries.

On a Mac done through anaconda the above was not necessary. My understanding is that setting these variables might
not actually do anything unless an option is specifically enabled in Xcode.

1.3.1 XIOS 2.5 (svn v1566)

Note: Looks like you could use XIOS 2.0 with NEMO 4.0, so if the following doesn’t work for you, try compiling
XIOS 2.0 instead.

Do the following:

mkdir XIOS
cd XIOS
svn checkout -r 1566 http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-2.5␣
→˓xios-2.5

To get XIOS to compile, the compilers and packages need to be pointed to first, via modifying files in arch. Since I
am using gcc, I did the following just to make a fresh copy:

cd xios2.5/arch
cp arch-GCC_LINUX.env arch-GCC_local.env
cp arch-GCC_LINUX.fcm arch-GCC_local.fcm
cp arch-GCC_LINUX.path arch-GCC_local.path

1.3. NEMO 4.0 (beta) + XIOS 2.5 15

http://forge.ipsl.jussieu.fr/nemo/wiki/Users/Agenda/2018-07-11

J Mak NEMO notes

The *.env file specifies where HDF5 and NetCDF4 libraries live. The *.fcm file specifies which compilers and
options to use. The *.path file specifies which paths and options to include. My files look like the following:

arch-GCC_local.env

export HDF5_INC_DIR=/usr/local/include # CHANGE ME
export HDF5_LIB_DIR=/usr/local/lib # CHANGE ME

export NETCDF_INC_DIR=/usr/local/include # CHANGE ME
export NETCDF_LIB_DIR=/usr/local/lib # CHANGE ME

You could get an idea where the HDF5 and NetCDF4 directories are by doing which h5copy and which nc-config
(assuming these are on $PATH), which should give you a directory/bin, and it is the directory part you want. If
you did install the libraries somewhere else as in other packages, say, then make sure the which commands are pointing
to the right place.

arch-GCC_local.fcm

##
################### Projet XIOS ###################
##

%CCOMPILER /usr/local/bin/mpicc # CHANGE ME
%FCOMPILER /usr/local/bin/mpif90 # CHANGE ME
%LINKER /usr/local/bin/mpif90 # CHANGE ME

%BASE_CFLAGS -ansi -w
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

%BASE_INC -D__NONE__
%BASE_LD -lstdc++

%CPP cpp-4.9 # CHANGE ME
%FPP cpp-4.9 -P # CHANGE ME
%MAKE make

Check the MPI locations and versions by doing which mpicc and mpicc --version say. If they are the right ones
you could just have mpicc instead of the full path as given above. MPI bindings are used here to avoid a possible error
that may pop up in relation to the build trying to find mpi.h. The gmake command was swapped out by the make
command (I don’t have cmake on the laptop).

Note: For gcc5.4 and maybe newer versions, doing just the above when compiling leads to a whole load of errors
about clashing in C++:

.../include/boost/functional/hash/extensions.hpp:69:33: error: ‘template<class T, class␣
→˓A> std::size_t boost::hash_value’ conflicts with a previous declaration

(continues on next page)

16 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

std::size_t hash_value(std::list<T, A> const& v)
^

Adding -D_GLIBCXX_USE_CXX11_ABI=0 to %BASE_CFLAGS fixes these.

A difference I’ve found between XIOS 2.5 and other XIOS versions is that doing just the above might lead to an error
like the following:

This file requires compiler and library support for the ISO C++ 2011 standard. This␣
→˓support is currently experimental, and must be enabled with the -std=c++11 or -
→˓std=gnu++11 compiler options.

Adding -std=c++11 to %BASE_CFLAGS seems to fix this.

You might also get the following:

SUBROUTINE cxios_set_interpolate_domain_read_write_convention(interpolate_domain_hdl,␣
→˓read_write_convention, read_write_conventi

␣
→˓ 1
Error: Unexpected junk in formal argument list at (1)

The Fortran lines are too long, so fix this by adding -ffree-line-length-none to %BASE_FFLAGS.

arch-GCC_local.path

NETCDF_INCDIR="-I$NETCDF_INC_DIR"
NETCDF_LIBDIR="-Wl,'--allow-multiple-definition' -L$NETCDF_LIB_DIR"
NETCDF_LIB="-lnetcdff -lnetcdf"

MPI_INCDIR=""
MPI_LIBDIR=""
MPI_LIB=""

HDF5_INCDIR="-I$HDF5_INC_DIR"
HDF5_LIBDIR="-L$HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lhdf5 -lz"

The above has all the OASIS (the atmosphere / ocean coupler) keys removed. I added the -Wl,
'--allow-multiple-definition' key for reasons I don’t remember anymore. . .

I went into bld.cfg, found the line

bld::tool::cflags %CFLAGS %CBASE_INC -I${PWD}/extern/src_netcdf -I${PWD}/
→˓extern/boost/include -I${PWD}/extern/rapidxml/include -I${PWD}/extern/blitz/
→˓include

and changed src_netcdf to src_netcdf4 (see XIOS1.0 stuff for the reason).

Now it should be ready to compile. Assuming the current directory is xios2.5/arch:

cd ../
./make_xios --full --prod --arch GCC_local -j2 |& tee compile_log.txt

1.3. NEMO 4.0 (beta) + XIOS 2.5 17

J Mak NEMO notes

The -j2 option uses two processors to build. The tee command is to keep logs of potential errors (the |& is short for
2>&1 |) for debugging errors that may arise.

1.3.2 NEMO 4.0 (svn v9925)

There is a restructuring of folders (see the official annoucement for details) so the commands below will reflect this.

Check out a version of NEMO. I have another folder separate to the XIOS folders to contain the NEMO codes and
binaries:

mkdir NEMO
cd NEMO
svn checkout -r 9925 http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk nemo4.0-9925

This checks out version 9925 (NEMO 4.0 beta) and dumps it into a folder called nemo4.0-9925 (change the target
path to whatever you like).

Note: svn checkout https://forge.ipsl.jussieu.fr/nemo/svn/NEMO/releases/release-4.0
nemo4.0 would pull the official version

A similar procedure to specify compilers and where XIOS lives needs to be done for NEMO. Again, because of the
compilers I am using:

cd nemo4.0-9925/arch
cp arch-linux_gfortran.fcm ./gfortran_local.fcm

None of the fcm files associated with gfortran actually worked for me out of the box so here is my build of it (click
HERE for a detailed log of how I got to the following):

gfortran_local.fcm

generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags
AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%NCDF_HOME /usr/local # CHANGE ME

%XIOS_HOME /home/julian/testing/gcc4.9-builds/XIOS/xios-2.5 # CHANGE ME

%CPP cpp-4.9 # CHANGE ME
%CPPFLAGS -P -traditional

(continues on next page)

18 Chapter 1. NEMO compilation notes

http://forge.ipsl.jussieu.fr/nemo/wiki/Users/Agenda/2018-07-11

J Mak NEMO notes

(continued from previous page)

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I%NCDF_HOME/include
%NCDF_LIB -L%NCDF_HOME/lib -lnetcdf -lnetcdff -lstdc++
%FC mpif90 # CHANGE ME
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

The main changes are (see here for an attempt at the reasoning and a log of errors that motivates the changes):

• added %NCDF_HOME to point to where NetCDF lives

• added %XIOS_* keys to point to where XIOS lives

• added %CPP and flags, consistent with using gcc4.9

• added the -lnetcdff and -lstdc++ flags to NetCDF flags

• using mpif90 which is a MPI binding of gfortran-4.9

• added -cpp and -ffree-line-length-none to Fortran flags

• swapped out gmake with make

Go into the configuration folder by

cd ../cfgs

One of the things I noticed is that makenemo now seems to work slightly differently (at least with this version). Normally
you can do makenemo -r GYRE -n GYRE_testing -j0 -m gcc_fortran_local, which copies a configuration
but does not compile it, so you can edit the cpp flags before compiling (and note that it adds an entry into works_cfgs.
txt). However now it seems you have to specify a -r flag or a -d flag (which specifies what NEMO modules the
configuration should have), whereas before just a -n flag would work by itself.

You could just compile as usual with makenemo (see NEMO 3.6 for syntax). The slightly untidy way to circumvent
errors that I know will come up was to do the following:

1. Open refs_cfg.txt, copy the GYRE_PISCES OCE TOP line and paste it at the bottom, but then change the
configuration name (GYRE_PISCES to GYRE_testing in my case), save and close it;

2. Then do

mkdir GYRE_testing
rsync -arv GYRE_PISCES/* GYRE_testing/

3. I opened /GYRE_testing/cpp_GYRE_testing.fcm and replaced key_top with key_nosignedzero (does
not compile TOP for speed speeds, and make sure zeros are not signed), save it;

1.3. NEMO 4.0 (beta) + XIOS 2.5 19

J Mak NEMO notes

4. Compile with (because makenmemo is now one level up)

../makenemo -j2 -r GYRE_testing -m gfortran_local |& tee compile_log.txt

(note the -r rather than -n flag here).

Warning: See if this feature of makenemo has been modified in the trunk?

Note the executable opa is now called nemo (so make sure you change those submission scripts on the relevant clusters
if you use NEMO on them). Check that it does run with the following:

cd GYRE_testing/EXP00
mpiexec -n 1 ./nemo

Note that what used to be solver.stat is now called run.stat, and there is an extra run.stat.nc for whatever
reason. The ocean.output file is still the same.

Note: If your installation compiles but does not run with the following error

dyld: Library not loaded: @rpath/libnetcdff.6.dylib
Referenced from: /paths/./nemo
Reason: no suitable image found. Did find:
/usr/local/lib/libnetcdff.6.dylib: stat() failed with errno=13

then it is not finding the right libraries. These could be fixed by adding the -Wl,-rpath,/fill me in/lib flag to
the relevant flags bit in the *.fcm files (or possibly in XIOS the path and/or env) to specify exactly where the libraries
live. This can happen for example on a Mac or if the libraries are installed not at the usual place.

Note: One infuriating problem I had specifically with a Mac (though it might be a gcc4.8 issue) is that the run does not
get beyond the initialisation stage. Going into ocean.output and searching for E R R O R shows that it complained
about a misspelled namelist item (in my case it was in the namberg namelist). If you go into output.namelist.dyn
and look for the offending namelist is that it might be reading in nonsense. This may happen if the comment character
! is right next to a variable, e.g.

ln_icebergs = .true.!this is a comment

Fix this by adding a white space, i.e.

ln_icebergs = .true. !this is a comment

20 Chapter 1. NEMO compilation notes

J Mak NEMO notes

1.4 NEMO 4.2 + XIOS 2.5

Tested with

• gcc8.3.0 on a computer cluster (HPC3, with in-built parallel HDF5 and NetCDF4)

The new official page is here and here. Following the instruction there largely works; below details minor things I
needed to fix on the particular machine I tested on.

1.4.1 XIOS 2.5 (svn v2462)

According to the NEMO install guide we should use the trunk of XIOS, so

svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk

(the version I happen to get is v2462). Previously I had issues with newer GCC versions that seems to have been
circumvented somehow, and XIOS builds with adding -D_GLIBCXX_USE_CXX11_ABI=0 and -std=c++11 to the
BASE_CFLAGS.

arch-HKUST_HPC3.fcm

##
################### Projet XIOS ###################
##

%CCOMPILER mpicc # CHANGE ME
%FCOMPILER mpif90 # CHANGE ME
%LINKER mpif90 # CHANGE ME

%BASE_CFLAGS -ansi -w -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__ -ffree-line-length-none
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

%BASE_INC -D__NONE__
%BASE_LD -lstdc++

%CPP cpp # CHANGE ME
%FPP cpp -P # CHANGE ME
%MAKE make

On HPC3 the various NetCDF4 folders are build and dumped in separate folders, so something needed to be done to
the env and path variable entries, as follows (making sure to load the modules accordingly):

arch-HKUST_HPC3.path

NETCDF_INCDIR="-I $NETCDF_INC_DIR -I $NETCDFF_INC_DIR"
NETCDF_LIBDIR="-L $NETCDF_LIB_DIR -L $NETCDFF_LIB_DIR"

(continues on next page)

1.4. NEMO 4.2 + XIOS 2.5 21

https://forge.nemo-ocean.eu/nemo/nemo/-/blob/4.2.0/README.rst
https://sites.nemo-ocean.io/user-guide/install.html#download-and-install-the-nemo-code
https://sites.nemo-ocean.io/user-guide/install.html#download-and-install-the-nemo-code

J Mak NEMO notes

(continued from previous page)

NETCDF_LIB="-lnetcdff -lnetcdf"

HDF5_INCDIR="-I $HDF5_INC_DIR"
HDF5_LIBDIR="-L $HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lhdf5 -lz"

arch-HKUST_HPC3.env

export HDF5_INC_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/hdf5/1.10.5/include
export HDF5_LIB_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/hdf5/1.10.5/lib

export NETCDF_INC_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf/4.7.1/include
export NETCDF_LIB_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf/4.7.1/lib

export NETCDFF_INC_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf-fortran/4.5.2/include
export NETCDFF_LIB_DIR=/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf-fortran/4.5.2/lib

I went into bld.cfg, found the line

bld::tool::cflags %CFLAGS %CBASE_INC -I${PWD}/extern/src_netcdf -I${PWD}/
→˓extern/boost/include -I${PWD}/extern/rapidxml/include -I${PWD}/extern/blitz/
→˓include

and changed src_netcdf to src_netcdf4 (see XIOS1.0 stuff for the reason). Then compile as usual:

cd ../
./make_xios --full --prod --arch GCC_local -j2 |& tee compile_log.txt

1.4.2 NEMO 4.2 (Git SHA 216c746957a674552de5bf02c17d22fa37f2a0d4)

NEMO is as of writing no longer using SVN, and managing code through Git instead. So I downloaded it by

git clone https://forge.nemo-ocean.eu/nemo/nemo.git nemo_4.2.0

I downloaded the whole thing and then looked to switch branches. To get only the official release, add the flag -b
4.2.0 (or download the whole thing and then switch using git switch --detach 4.2.0). After some trial and
error I basically did

arch-HKUST_HPC3.fcm

%XIOS_HOME /scratch/PI/jclmak/XIOS_mpi/xios-2.5-r2462

%CPP cpp
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf-fortran/4.5.2/include -I/
→˓opt/ohpc/pub/libs/gnu8/openmpi3/netcdf/4.7.1/include
%NCDF_LIB -L/opt/ohpc/pub/libs/gnu8/openmpi3/netcdf/4.7.1/lib -L/opt/ohpc/pub/

(continues on next page)

22 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

→˓libs/gnu8/openmpi3/netcdf-fortran/4.5.2/lib -lnetcdf -lnetcdff -lstdc++
%FC mpif90
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

and everything built fine. The tricky bit was the combination of module loads, and I went one step further and brute
force pointed to the relevant include and lib folders.

Note: I had some issues with using older compilers and/or OpenMPI. XIOS will compile fine, but when compiling
NEMO experiments will lead to something like

There is no specific subroutine for the generic 'mpi_dist_graph_create_adjacent'

Hence the new test compile with newer compilers (because this was the one that already interfaces with the newer
OpenMPI3).

The usage is as in NEMO 4.0.

Note: The zenodo repository when I went to check (ORCA2_ICE_v4.2.tar) for the inputs when testing ORCA2 was
missing stuff (e.g. iwd, internal wave dissipation probably), so I just went into namelist_cfg and switched it off, and
it run as usual.

1.5 Oxford ARC compilation

The build uses NEMO 3.7/4.0 + XIOS 2.0 as the example. For installing other versions, extrapolate from the other
notes.

Annoyingly (!) everything basically works out of the box because all the dependency modules have been built already!
This has not been the usual experience I have with XIOS and NEMO. . .

1.5. Oxford ARC compilation 23

https://zenodo.org/record/3767939

J Mak NEMO notes

1.5.1 Building NEMO and XIOS

Log on first using:

ssh [-X] phys????@arcus-b.arc.ox.ac.uk

On first login doing module list should show no modules; if there are then might want to do module purge just for
safety. Doing module avail shows the list of modules available. I’m going to use the gcc one, and by doing

module load /netcdf-parallel/4.4__mvapich2__gcc

this loads NetCDF4 as well as its dependencies (which should be HDF5, gcc4.9.2 and the relevant mvapich); I added
that line to ~/.bashrc so it loads from now on when logging in. Then I did

echo $LD_LIBRARY_PATH
> /system/software/arcus-b/lib/netcdf/4.4/mvapich2-2.1.0__gcc-4.9.2/lib:/system/software/
→˓arcus-b/lib/hdf5/1.8.12/mvapich2-2.1.0__gcc-4.9.2/lib ...

which tells me where the NetCDF and HDF5 libraries live. So for XIOS I do

cd $DATA # <--- this is the "work" directory (which is generically not ~/)
mkdir XIOS
cd XIOS
svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk@1322 xios-2.0
cd xios2.0/arch
cp arch-GCC_LINUX.env arch-GCC_ARC.env
cp arch-GCC_LINUX.fcm arch-GCC_ARC.fcm
cp arch-GCC_LINUX.path arch-GCC_ARC.path

with

arch-GCC_ARC.env

export HDF5_INC_DIR=/system/software/arcus-b/lib/hdf5/1.8.12/mvapich2-2.1.0__gcc-4.9.2/
→˓include
export HDF5_LIB_DIR=/system/software/arcus-b/lib/hdf5/1.8.12/mvapich2-2.1.0__gcc-4.9.2/
→˓lib

export NETCDF_INC_DIR=/system/software/arcus-b/lib/netcdf/4.4/mvapich2-2.1.0__gcc-4.9.2/
→˓include
export NETCDF_LIB_DIR=/system/software/arcus-b/lib/netcdf/4.4/mvapich2-2.1.0__gcc-4.9.2/
→˓lib

and the other two as default. Running

cd ../
./make_xios --full --prod --arch HKUST_HPC2 -j4 |& tee compile_log.txt

seems to do the job. I think I did go into bld.cfg and changed src_netcdf to src_netcdf4 for safety; don’t
remember needing this in ARCHER (did need it when doing a local compilation). If that doesn’t work consider adding
CPPFLAGS and LDFLAGS before the ./make_xios command to force the program to look in the specified place.

NEMO is then built as follows:

24 Chapter 1. NEMO compilation notes

J Mak NEMO notes

cd $DATA
mkdir NEMO
cd NEMO
svn co http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk@8666 nemo3.7-8666
cd nemo3.7-8666/NEMOGCM/ARCH
cp OLD/arch-gfortran_linux.fcm ./arch-GCC_ARC.fcm

using

arch-GCC_ARC.fcm
generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags
AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%XIOS_HOME $DATA/XIOS/xios-2.0

%CPP cpp
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I/system/software/arcus-b/lib/netcdf/4.4/mvapich2-2.1.0__gcc-4.9.2/
→˓include
%NCDF_LIB -L/system/software/arcus-b/lib/netcdf/4.4/mvapich2-2.1.0__gcc-4.9.2/
→˓lib -lnetcdf -lnetcdff -lstdc++
%FC mpif90
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

followed by

cd ../CONFIG
(continues on next page)

1.5. Oxford ARC compilation 25

J Mak NEMO notes

(continued from previous page)

./makenemo -r GYRE_PISCES -n GYRE_testing -m GCC_ARC -j0
nano GYRE_testing/cpp_GYRE_testing.fcm # (have key_top -> key_nosignedzero)
./makenemo -n GYRE_tesitng -m GCC_ARC -j4

and it should work. One more thing we will do is to make TOOLS/REBUILD_NEMO:

cd ../TOOLS
./maketools -n REBUILD_NEMO -m GCC_ARC

1.5.2 Running NEMO on the ARC

The system uses SLURM and the key commands are

• sbatch [submit_nemo]: submits the job detailed in submit_nemo (see below)

• scancel [job ID]: cancel the job

• sinfo: check status of queues available

• squeue -u $USER: check job info for $USER

sbatch could be used with arguments but I am going to have everything within submit_nemo itself. Check balance and
budget account names with the mybalance command. Running sinfo shows the queue available is called compute.
One thing to note is that ARC has 16 cores per node and this is reflected in the core/node request numbers.

Oxford ARC does have parallel NetCDF so I can use XIOS in detached mode. To do this I link xios_server.exe to
the folder:

cd GYRE_testing/EXP00
ln -s $DATA/XIOS/xios2.0/bin/xios_server.exe .

Modify iodef.xml so that the user server boolean is true. Additionally I go into file_def_nemo.xml and swap out
multiple_file at the top header to one_file, which then spits out a single NetCDF file. This however only works for
the diagnostic files but not the restart files, so recombining the restart files we are going to call TOOLS/REBUILD_NEMO
in the post-processing script.

The generic submission script I use (based on the one given on the NOCL page) is as follows (I have some ASCII art
in there because I got bored at some point):

#!/bin/bash

NOTE: Lines starting with "#SBATCH" are valid SLURM commands or statements,
while those starting with "#" and "##SBATCH" are comments. Uncomment
"##SBATCH" line means to remove one # and start with #SBATCH to be a
SLURM command or statement.

#===
DEFINE SOME JUNK FOR THE SUBMISSION (??? make this more flexible with e.g. queues?)
#===

#SBATCH -J gyre04 # job name
#SBATCH -o stdouterr # output and error file name
#SBATCH -n 32 # total number of mpi tasks requested
#SBATCH -N 2 # total number of nodes requested
#SBATCH -p compute # queue (partition) -- standard, development, etc.

(continues on next page)

26 Chapter 1. NEMO compilation notes

https://nemo-nocl.readthedocs.io/en/latest/work_env/mobius.html

J Mak NEMO notes

(continued from previous page)

#SBATCH -t 12:00:00 # maximum runtime

Enable email notificaitons when job begins and ends, uncomment if you need it
##SBATCH --mail-user=user_name@ust.hk #Update your email address
##SBATCH --mail-type=begin
##SBATCH --mail-type=end

Setup runtime environment if necessary
module purge
module load netcdf-parallel/4.4__mvapich2__gcc

#===
LAUNCH JOB
#===

echo " _ __ ___ _ __ ___ ___ "
echo "| '_ \ / _ \ '_ ' _ \ / _ \ "
echo "| | | | __/ | | | | | (_) | "
echo "|_| |_|___|_| |_| |_|___/ v3.7 "

Go to the job submission directory and run your application
cd /data/phys-geometric/phys1342/NEMO/nemo3.7-8666/NEMOGCM/CONFIG/GYRE_testing/EXP00
mpirun -n 2 ./xios_server.exe : -n 30 ./opa

#===
POSTPROCESSING
#===

kills the daisy chain if there are errors

if grep -q 'E R R O R' ocean.output ; then

echo "E R R O R found, exiting..."
echo " ___ _ __ _ __ ___ _ __ "
echo " / _ \ '__| '__/ _ \| '__| "
echo "| __/ | | | | (_) | | "
echo " ___|_| |_| ___/|_| "
echo "check out ocean.output or stdouterr to see what the deal is "

exit
else
echo "going into postprocessing stage..."
cleans up files, makes restarts, moves files, resubmits this pbs

bash ./postprocess.sh >& cleanup.log
exit

fi

The ratio of XIOScore to NEMOcore I never found to lead to major differences for the size of runs I do (not larger than
300 cores); vaguely remember reading somewhere that XIOScore hovering between 5 to 10 per cent of NEMOcore is
ok.

The following post-processing script requires a few prepping (I make no apologies for the bad code and the script being

1.5. Oxford ARC compilation 27

J Mak NEMO notes

fickle; feel free to modify as you see fit):

• copying the nn_date0 line into namelist_cfg from say namelist_ref if it doesn’t exist already, because the
time-stamps are modified by modifying nn_date0

• do a search in namelist_cfg and make sure there is only ever one mention of nn_date0 (otherwise it grabs
the wrong lines)

• nn_date0 should not begin with zeros (e.g. 10101 rather than 010101 in yymmdd)

• in the experiment folder, do mkdir RESTARTS OUTPUTS (otherwise there is no folder to copy into)

The postprocess.sh I cooked up is here:

#!/bin/bash
#! postprocess.sh
#! Script to clean up the NEMO outputs

export BASE_DIR=$DATA/NEMO/nemo3.7-8666/NEMOGCM/
export MODEL=GYRE
export NUM_CPU=30

time-stamp increment, yymmdd
export DATE_INC=100000

when to stop the daisy chaining, yymmdd
export THRESH=10

error catching (only when restart files etc cannot be copied or made)
export ERR_CATCH=0

##
0) recombine files to one netcdf (restarts and/or outputs)
restarts: extract the restart file time-step stamp
based on the *0000.nc restart which should (!) always exist
rebuild the restart file in the submission directory
outputs: put them in manually and just do a grab
this assumes only files at the current time-stamp is there,
otherwise it will bug out as it grabs wrong files
##

restart files
export RES_TIMESTAMP=$(echo $(ls -d ${MODEL}_*_restart_0000.nc) | awk -F _ '{print $2 }')

$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart $NUM_CPU
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: making the restart file in the folder"

fi
##$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart_ice $NUM_
→˓CPU

output files (assumes a grid_T always exists)
#export OUT_FREQ=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $2 }')
#export OUT_START=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $3 }')
#export OUT_END=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $4 }')

(continues on next page)

28 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

#$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_T $NUM_CPU
#$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_U $NUM_CPU
#$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_V $NUM_CPU
#$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_W $NUM_CPU

add more things in here if output freqs are different etc

##
1) pull out some variables to modify namelist file
##

pull the number out
add the increment to it for new date
subtract appropriately to get the date stamp
(e.g. 110101 - 8871 = 101230) and bulk out zeros

export OLD_DATE_STR=$(grep -ri "nn_date0" namelist_cfg)
export OLD_DATE_NUM=$(echo ${OLD_DATE_STR} | sed -e 's/[^0-9]//g' | awk '{print $NF}')
export NEW_DATE_NUM=$((OLD_DATE_NUM + DATE_INC))

8871 for 30 days a month (so the RES_STAMP=yyyy1230)
otherwise do 8870 (so the RES_STAMP=yyyy1231)
do something else for other time units
export RES_STAMP=$(printf %08d $((NEW_DATE_NUM - 8871)))

##
2) move files around and tidy up
##

cp -pv ${MODEL}_${RES_TIMESTAMP}_restart.nc ./RESTARTS/${MODEL}_${RES_STAMP}_restart.nc
cp -pv ./output.namelist.dyn ./OUTPUTS/output.namelist.dyn.${RES_STAMP}
#cp -pv ${MODEL}_${RES_TIMESTAMP}_restart_ice.nc ./RESTARTS/${MODEL}_${RES_STAMP}_
→˓restart_ice.nc
#cp -pv ./output.namelist.ice ./OUTPUTS/output.namelist.ice.${RES_STAMP}
cp -pv ./ocean.output ./OUTPUTS/ocean.output.${RES_STAMP}
cp -pv ./solver.stat ./OUTPUTS/solver.stat.${RES_STAMP}
cp -pv ./stdouterr ./OUTPUTS/stdouterr.${RES_STAMP}
cp -pv ./namelist_cfg ./OUTPUTS/namelist_cfg.${RES_STAMP}

#cp -pv ./volume_transport ./OUTPUTS/volume_transport.${RES_STAMP}
#cp -pv ./salt_transport ./OUTPUTS/salt_transport.${RES_STAMP}
#cp -pv ./heat_transport ./OUTPUTS/heat_transport.${RES_STAMP}

rm -v ${MODEL}_${RES_TIMESTAMP}_restart*
rm -v restart.nc
#rm -v restart_ice.nc
rm -v ${MODEL}_*_????.nc

(continues on next page)

1.5. Oxford ARC compilation 29

J Mak NEMO notes

(continued from previous page)

mv ${MODEL}*.nc ./OUTPUTS

cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart.nc ./restart.nc
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart file into folder"

fi

#cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart_ice.nc ./restart_ice.nc
#if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart_ice file into folder"
#fi

##
3) if all good, then modify namelist_cfg and resbumit
##

if (($ERR_CATCH > 0)) || ((${NEW_DATE_NUM} > $THRESH)); then
if (($ERR_CATCH > 0)); then

echo " "
echo " "
echo " "
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"

else
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣

→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

fi
echo " "
echo " "
echo " "
echo " "
echo " ... a wild Totoro appeared and blocked your resubmission!"
echo " ,--'''',--.__,---[],-------._ "
echo " ,' __,' \ \--''''''==;- "
echo " ,' _,-' '/---.___ \ ___\ ,-'',' "
echo " /,-' / ;. ,.--'-.__\ _,-'' ,| ',' / "
echo " /''''''-._/,-|:\ []\,' '''-/:;-. '. / "
echo " ' ;::: || /:,; '-.\ "
echo " =.,'__,---||-.____',.= "
echo " =(:_ ||__):)= "
echo " ,'::::'----||::'--':::'._ "
echo " ,':::::::::::||::::::::::::'. "
echo " .__ ;:::.-.:::::__||___:::::.-.:::\ __, "
echo " '''-;:::(O)::::>_|| _<::::(O)::::-''' "

(continues on next page)

30 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

echo " =======;:::::'-':::::::||':::::::'-':::::\======= "
echo " ,--'';:::_____________||______________::::''----. , , "
echo " ; ::'._(| ||| |)_,'::::_,,,,,,,,,,____/,'_, "
echo " ,; :::'--._|____[]|_____|_.-'::::::::::::::::::::::::);_ "
echo " ;/ / :::::::::,||,:::::::::::::::::::::::::::::::::::/ "
echo " /; ''''''----------/,'/,__,,,,,____:::::::::::::::::::::,' "
echo " ;/ :);/|_;| ,--.. . '''-.:::::::::::::_,' "
echo " /; :::):__,'//''\\. ,--.. \:::,:::::_,' "
echo " ;/ :::::/ //''\\. \::':__,' "
echo " ;/ :::::::,':'::\ "
echo " '; :::::::__,'. ,--.. . .,--.:'::' "
echo " '; __,..--'''-. . //''\\. .//''\\ . ,--.. :':::' "
echo " ; / \\ .//''\\ //''\\. :'::' "
echo " ; /:'::' "
echo " ; (. ;:::' "
echo " ,: ;, ;':::' "
echo " ,: ;,;':::' "
echo " ,: ;, ;'::;' "
echo " : ; ,':::; "
echo " : '.,':::;' "
echo " : '. ;::::;' "
echo " '. '-. ,-'::::; "
echo " ':_ ''--..___________..--'':::::;'' "
echo " '._::,.:,.:,:_ctr_:,:,.::,.:_;'' "
echo "________________''\/'\/\/''''''\/'\/''\/'____________________________"

else
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣
→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣
→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo " "
echo "OK: ...and here is Christopher resbumitting the job for you......"
echo " ,-.____,-. "
echo " / .. \ "
echo " /_ _\ "
echo " |'o' 'o'| "
echo " / ____________ \ "
echo " , ,' '--' '. . "
echo " _| | | |_ "
echo " / ' ' ' ' \ "
echo " (',',__________.',') "
echo " _ ' ._______, ' _/ "

(continues on next page)

1.5. Oxford ARC compilation 31

J Mak NEMO notes

(continued from previous page)

echo " | | "
echo " | ,-. ,-. | "
echo " \).,(/ "
echo " gpyy ___/ ___/ "
sbatch submit_nemo

fi

exit

The output recombination steps have bene commented out because ARC does have parallel NetCDF4 and so the
one_file option in field_def_nemo.xml already takes care of the outputs.

1.6 HKUST HPC2 compilation

The build uses NEMO 3.7/4.0 + XIOS 2.0 as the example. For installing other versions, extrapolate from the other
notes.

HKUST HPC2 is a cluster with SLURM. Modules are loaded on an per basis via sourcing some shell scripts. The
following is going to use gcc and openmpi, but in theory the corresponding intel compilers should work too (not
tested):

source /usr/local/setup/gcc-g++-4.9.2.sh
source /usr/local/setup/openmpi-2.0.0.sh

The notes are (psuedo)-chronological (complete with errors) rather than the final product to highlight some pitfalls and
workarounds to do with HDF5 and NetCDF4 compatibility (the system itself does not have parallel HDF5 or NetCDF4
and it was a mystery which compiler the libraries were built with).

1.6.1 XIOS (1st try that doesn’t quite work)

Warning: Doing whatever is detailed here in this subsection will get XIOS compiled, but then it turns out when
compiling NEMO that the system NetCDF4 is incompatible with the chosen compiler (I still have no idea which
compiler was used for the system NetCDF4). The final working solution is to compile (a much more up-to-date)
HDF5 and NetCDF4 separately; this means the final arch-HKUST_HPC2.env will be different.

I did the usual things of downloading XIOS and copying the arch files in

cd $PI_HOME # <--- this is the "work" directory (which is generically not ~/)
mkdir XIOS
cd XIOS
svn checkout -r 1322 http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk xios-2.0
cd xios2.0/arch
cp arch-GCC_LINUX.env arch-HKUST_HPC2.env
cp arch-GCC_LINUX.fcm arch-HKUST_HPC2.fcm
cp arch-GCC_LINUX.path arch-HKUST_HPC2.path

HDF5 and NetCDF4 is not included in a load so it is there by default. Doing for example locate libnetcdf tells
me that I should have the following:

32 Chapter 1. NEMO compilation notes

J Mak NEMO notes

arch-HKUST_HPC2.env

export HDF5_INC_DIR=/usr/include
export HDF5_LIB_DIR=/usr/lib64

export NETCDF_INC_DIR=/usr/include
export NETCDF_LIB_DIR=/usr/lib64

Following this I did

export LD_LIBRARY_PATH="/usr/lib64:$LD_LIBRARY_PATH"

as it seems to help the programs find the libraries.

I must have done something a bit weird to the arch-HKUST_HPC2.path:

NETCDF_INCDIR="-I$NETCDF_INC_DIR"
#NETCDF_LIBDIR='-Wl,"--allow-multiple-definition" -Wl,"-Bstatic" -L$NETCDF_LIB_DIR'
NETCDF_LIBDIR='-Wl,"--allow-multiple-definition" -L$NETCDF_LIB_DIR'
NETCDF_LIB="-lnetcdff -lnetcdf"

HDF5_LIBDIR="-L$HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lz"

Not sure where I got the -Bstatic flag from initially (maybe from the ARCHER compilation). If that flag is there
when doing the compiling then I get the error

ERROR
linker error: ld cannot locate lnetcdf etc.

but doing something like ld [-L/usr/lib64] -lnetcdf --verbose or using whatever the ld is actually called
because of the modified $PATH clearly shows success. The same happens when the intel compilers are used. Anyway,
using the following (the system had gmake so I left it; make should work too)

arch-HKUST_HPC2.fcm

##
################### Projet XIOS ###################
##

%CCOMPILER mpicc
%FCOMPILER mpif90
%LINKER mpif90

%BASE_CFLAGS -ansi -w
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__ -ffree-line-length-none
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

(continues on next page)

1.6. HKUST HPC2 compilation 33

J Mak NEMO notes

(continued from previous page)

%BASE_INC -D__NONE__
%BASE_LD -lstdc++

%CPP cpp
%FPP cpp -P
%MAKE gmake

followed by

cd ../
[CPPFLAGS=-I/usr/include LDFLAGS=-L/usr/lib64] ./make_xios --full --prod --arch HKUST_
→˓HPC2 -j4 |& tee compile_log.txt

seems to do the job. I think I did go into bld.cfg and changed src_netcdf to src_netcdf4 for safety; don’t
remember needing this in ARCHER (did need it when doing a local compilation).

1.6.2 NEMO (1st try that doesn’t quite work)

Warning: Again this doesn’t quite work because of NetCDF4 Fortran compiler compatibility. The final working
arch-HKUST_HPC2.fcm has a modified %NCDF_INC and %NCDF_LIB.

As advertised, when doing the following

cd $PI_HOME
mkdir NEMO
cd NEMO
svn checkout -r 8666 http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk nemo3.7-8666
cd nemo3.7-8666/NEMOGCM/ARCH
cp OLD/arch-gfortran_linux.fcm ./arch-HKUST_HPC2.fcm

using

arch-HKUST_HPC2.fcm
generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags
AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%XIOS_HOME $PI_HOME/XIOS/xios-2.0

(continues on next page)

34 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

%CPP cpp
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I/usr/include
%NCDF_LIB -L/usr/lib64 -lnetcdf -lnetcdff -lstdc++
%FC mpif90
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

When building with

cd ../CONFIG
./makenemo -r GYRE_PISCES -n GYRE_testing -m HKUST_HPC2 -j0
nano GYRE_testing/cpp_GYRE_testing.fcm # (have key_top -> key_nosignedzero)
./makenemo -n GYRE_tesitng -m HKUST_HPC2 -j4

throws up the error that NetCDF4 being called was built with a different gfortran compiler. So the workaround here is
build the dependencies separately. . .

1.6.3 zlib, HDF5 and NetCDF4

I have not figured out how to get the parallel builds of HDF5 and NetCDF4 done successfully. Without it NEMO
still works fine it just means each processor spits out the data associated with the tile it is assigned to: the one_file
option in file_def_nemo.xml doesn’t work without parallel NetCDF4 and only multiple_file is allowed (it will
crash the first time step it tries to write). The workaround here is to at the post-processing stage rely on the NEMO
TOOLS/REBUILD_NEMO to recombine the files if required.

I built everything as follows (see here for more details on the commands maybe):

Warning: LD_LIBRARY_FLAG definitely does not point to /usr/lib64 now, though I don’t remember if I strictly
needed to set it to $PI_HOME/custom_libs/lib

initialise
cd $PI_HOME
mkdir custom_libs
cd custom_libs
mkdir sources
cd sources

(continues on next page)

1.6. HKUST HPC2 compilation 35

J Mak NEMO notes

(continued from previous page)

zlib
wget http://www.zlib.net/zlib-1.2.11.tar.gz
tar -xvzf $BD/source/zlib-1.2.11.tar.gz
cd zlib-1.2.11
CFLAGS=-fPIC ./configure --prefix=$PI_HOME/custom_libs # -fPIC for shared libraries
make -j 4
make check install

HDF5
cd $PI_HOME/custom_libs/sources
wget https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.19/src/hdf5-1.8.19.
→˓tar.gz
tar -xvzf $BD/source/hdf5-1.8.19.tar.gz
cd hdf5-1.8.19
CPPFLAGS=-I$PI_HOME/custom_libs/include LDFLAGS=-L$PI_HOME/custom_libs/lib \

CFLAGS=-fPIC ./configure --enable-shared --enable-fortran --prefix=$PI_HOME/custom_libs
make -j 4
make check install # <---- this step takes a while

NetCDF (C)
cd $PI_HOME/custom_libs/sources
wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.4.1.1.tar.gz
tar -xvzf $BD/source/netcdf-4.4.1.1.tar.gz
cd netcdf-4.4.1.1
CPPFLAGS=-I$PI_HOME/custom_libs/include LDFLAGS=-L$PI_HOME/custom_libs/lib \

./configure --enable-netcdf4 --enable-shared --prefix=$PI_HOME/custom_libs
make -j 4
make check install # <---- this step takes a while

NetCDF (Fortran)
cd $PI_HOME/custom_libs/sources
wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-fortran-4.4.4.tar.gz
tar -xvzf $BD/source/netcdf-fortran-4.4.4.tar.gz
cd netcdf-fortran-4.4.4
CPPFLAGS=-I$PI_HOME/custom_libs/include LDFLAGS=-L$PI_HOME/custom_libs/lib \

./configure --enable-shared --prefix=$PI_HOME/custom_libs
make -j 4
make check install

My written notes says I made sure LD_LIBRARY_PATH pointed to $PI_HOME/custom_libs/libs for the NetCDF4-
fortran ./configure part.

36 Chapter 1. NEMO compilation notes

J Mak NEMO notes

1.6.4 Building XIOS and NEMO again

I rebuilt XIOS after changing arch-HKUST_HPC2.env to (probably added to LD_LIBRARY_PATH):

arch-HKUST_HPC2.env

export HDF5_INC_DIR=$PI_HOME/custom_libs/include
export HDF5_LIB_DIR=$PI_HOME/custom_libs/lib

export NETCDF_INC_DIR=$PI_HOME/custom_libs/include
export NETCDF_LIB_DIR=$PI_HOME/custom_libs/lib

For the NEMO part, arch-HKUST_HPC2.fcm now has the following:

%NCDF_INC -I/$PI_HOME/custom_libs/include
%NCDF_LIB -L$PI_HOME/custom_libs/lib -lnetcdf -lnetcdff -lstdc++

Then finally everything works. I’m going to make use of the NEMO TOOLS/REBUILD_NEMO to have a single NetCDF
file so I additionally do the following (starting from the CONFIG folder):

cd ../TOOLS
./maketools -n REBUILD_NEMO -m HKUST_HPC2

which results in a TOOLS/REBUILD_NEMO/rebuild_nemo.exe that I am going to use in my post-processing script
later.

1.6.5 Running NEMO on the HPC2

The system uses SLURM and the key commands are

• sbatch [submit_nemo]: submits the job detailed in submit_nemo (see below)

• scancel [job ID]: cancel the job

• sinfo: check status of queues available

• squeue -u $USER: check job info for $USER

sbatch could be used with arguments but I am going to have everything within submit_nemo itself. The generic one
I use (based on the one given on the NOCL page) is as follows (I have some ASCII art in there because I got bored at
some point):

#!/bin/bash

NOTE: Lines starting with "#SBATCH" are valid SLURM commands or statements,
while those starting with "#" and "##SBATCH" are comments. Uncomment
"##SBATCH" line means to remove one # and start with #SBATCH to be a
SLURM command or statement.

#===
DEFINE SOME JUNK FOR THE SUBMISSION (??? make this more flexible with e.g. queues?)
#===

#SBATCH -J gyre04 # job name
#SBATCH -o stdouterr # output and error file name
#SBATCH -n 24 # total number of mpi tasks requested

(continues on next page)

1.6. HKUST HPC2 compilation 37

https://nemo-nocl.readthedocs.io/en/latest/work_env/mobius.html

J Mak NEMO notes

(continued from previous page)

#SBATCH -N 1 # total number of nodes requested
#SBATCH -p ssci # queue (partition) -- standard, development, etc.
#SBATCH -t 12:00:00 # maximum runtime

Enable email notificaitons when job begins and ends, uncomment if you need it
##SBATCH --mail-user=user_name@ust.hk #Update your email address
##SBATCH --mail-type=begin
##SBATCH --mail-type=end

Setup runtime environment if necessary
For example, setup MPI environment
source /home/jclmak/nemo_env.sh
or you can source ~/.bashrc or ~/.bash_profile

#===
LAUNCH JOB
#===

echo " _ __ ___ _ __ ___ ___ "
echo "| '_ \ / _ \ '_ ' _ \ / _ \ "
echo "| | | | __/ | | | | | (_) | "
echo "|_| |_|___|_| |_| |_|___/ v3.7 "

Go to the job submission directory and run your application
cd $PI_HOME/NEMO/nemo3.7-8666/NEMOGCM/CONFIG/GYRE_testing/EXP00/
mpirun -n 24 ./opa

#===
POSTPROCESSING
#===

kills the daisy chain if there are errors

if grep -q 'E R R O R' ocean.output ; then

echo "E R R O R found, exiting..."
echo " ___ _ __ _ __ ___ _ __ "
echo " / _ \ '__| '__/ _ \| '__| "
echo "| __/ | | | | (_) | | "
echo " ___|_| |_| ___/|_| "
echo "check out ocean.output or stdouterr to see what the deal is "

exit
else
echo "going into postprocessing stage..."
cleans up files, makes restarts, moves files, resubmits this pbs

bash ./postprocess.sh >& cleanup.log
exit

fi

Here because I am not using xios_server.exe I don’t strictly need the -n 24 after mpirun (it will then just use
however many cores that’s given in #SBATCH -n). Maybe see the Oxford ARC one to see how it might work when

38 Chapter 1. NEMO compilation notes

J Mak NEMO notes

xios_server.exe is run alongside NEMO to do the I/O .

The following post-processing script requires a few prepping (I make no apologies for the bad code and the script being
fickle; feel free to modify as you see fit):

• copying the nn_date0 line into namelist_cfg from say namelist_ref if it doesn’t exist already, because the
time-stamps are modified by modifying nn_date0

• do a search in namelist_cfg and make sure there is only ever one mention of nn_date0 (otherwise it grabs
the wrong lines)

• nn_date0 should not begin with zeros (e.g. 10101 rather than 010101 in yymmdd)

• in the experiment folder, do mkdir RESTARTS OUTPUTS (otherwise there is no folder to copy into)

The postprocess.sh I cooked up is here:

#!/bin/bash
#! postprocess.sh
#! Script to clean up the NEMO outputs

export BASE_DIR=$PI_HOME/NEMO/nemo3.7-8666/NEMOGCM/
export MODEL=GYRE
export NUM_CPU=24

time-stamp increment, yymmdd
export DATE_INC=100000

when to stop the daisy chaining, yymmdd
export THRESH=10

error catching (only when restart files etc cannot be copied or made)
export ERR_CATCH=0

##
0) recombine files to one netcdf (restarts and/or outputs)
restarts: extract the restart file time-step stamp
based on the *0000.nc restart which should (!) always exist
rebuild the restart file in the submission directory
outputs: put them in manually and just do a grab
this assumes only files at the current time-stamp is there,
otherwise it will bug out as it grabs wrong files
##

restart files
export RES_TIMESTAMP=$(echo $(ls -d ${MODEL}_*_restart_0000.nc) | awk -F _ '{print $2 }')

$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart $NUM_CPU
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: making the restart file in the folder"

fi
##$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart_ice $NUM_
→˓CPU

output files (assumes a grid_T always exists)
(continues on next page)

1.6. HKUST HPC2 compilation 39

J Mak NEMO notes

(continued from previous page)

export OUT_FREQ=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $2 }')
export OUT_START=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $3 }')
export OUT_END=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $4 }')

$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_T $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_U $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_V $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_W $NUM_CPU

add more things in here if output freqs are different etc

##
1) pull out some variables to modify namelist file
##

pull the number out
add the increment to it for new date
subtract appropriately to get the date stamp
(e.g. 110101 - 8871 = 101230) and bulk out zeros

export OLD_DATE_STR=$(grep -ri "nn_date0" namelist_cfg)
export OLD_DATE_NUM=$(echo ${OLD_DATE_STR} | sed -e 's/[^0-9]//g' | awk '{print $NF}')
export NEW_DATE_NUM=$((OLD_DATE_NUM + DATE_INC))

8871 for 30 days a month (so the RES_STAMP=yyyy1230)
otherwise do 8870 (so the RES_STAMP=yyyy1231)
do something else for other time units
export RES_STAMP=$(printf %08d $((NEW_DATE_NUM - 8871)))

##
2) move files around and tidy up
##

cp -pv ${MODEL}_${RES_TIMESTAMP}_restart.nc ./RESTARTS/${MODEL}_${RES_STAMP}_restart.nc
cp -pv ./output.namelist.dyn ./OUTPUTS/output.namelist.dyn.${RES_STAMP}
#cp -pv ${MODEL}_${RES_TIMESTAMP}_restart_ice.nc ./RESTARTS/${MODEL}_${RES_STAMP}_
→˓restart_ice.nc
#cp -pv ./output.namelist.ice ./OUTPUTS/output.namelist.ice.${RES_STAMP}
cp -pv ./ocean.output ./OUTPUTS/ocean.output.${RES_STAMP}
cp -pv ./solver.stat ./OUTPUTS/solver.stat.${RES_STAMP}
cp -pv ./stdouterr ./OUTPUTS/stdouterr.${RES_STAMP}
cp -pv ./namelist_cfg ./OUTPUTS/namelist_cfg.${RES_STAMP}

#cp -pv ./volume_transport ./OUTPUTS/volume_transport.${RES_STAMP}
#cp -pv ./salt_transport ./OUTPUTS/salt_transport.${RES_STAMP}
#cp -pv ./heat_transport ./OUTPUTS/heat_transport.${RES_STAMP}

rm -v ${MODEL}_${RES_TIMESTAMP}_restart*

(continues on next page)

40 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

rm -v restart.nc
#rm -v restart_ice.nc
rm -v ${MODEL}_*_????.nc
mv ${MODEL}*.nc ./OUTPUTS

cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart.nc ./restart.nc
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart file into folder"

fi

#cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart_ice.nc ./restart_ice.nc
#if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart_ice file into folder"
#fi

##
3) if all good, then modify namelist_cfg and resbumit
##

if (($ERR_CATCH > 0)) || ((${NEW_DATE_NUM} > $THRESH)); then
if (($ERR_CATCH > 0)); then

echo " "
echo " "
echo " "
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"

else
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣

→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

fi
echo " "
echo " "
echo " "
echo " "
echo " ... a wild Totoro appeared and blocked your resubmission!"
echo " ,--'''',--.__,---[],-------._ "
echo " ,' __,' \ \--''''''==;- "
echo " ,' _,-' '/---.___ \ ___\ ,-'',' "
echo " /,-' / ;. ,.--'-.__\ _,-'' ,| ',' / "
echo " /''''''-._/,-|:\ []\,' '''-/:;-. '. / "
echo " ' ;::: || /:,; '-.\ "
echo " =.,'__,---||-.____',.= "
echo " =(:_ ||__):)= "
echo " ,'::::'----||::'--':::'._ "

(continues on next page)

1.6. HKUST HPC2 compilation 41

J Mak NEMO notes

(continued from previous page)

echo " ,':::::::::::||::::::::::::'. "
echo " .__ ;:::.-.:::::__||___:::::.-.:::\ __, "
echo " '''-;:::(O)::::>_|| _<::::(O)::::-''' "
echo " =======;:::::'-':::::::||':::::::'-':::::\======= "
echo " ,--'';:::_____________||______________::::''----. , , "
echo " ; ::'._(| ||| |)_,'::::_,,,,,,,,,,____/,'_, "
echo " ,; :::'--._|____[]|_____|_.-'::::::::::::::::::::::::);_ "
echo " ;/ / :::::::::,||,:::::::::::::::::::::::::::::::::::/ "
echo " /; ''''''----------/,'/,__,,,,,____:::::::::::::::::::::,' "
echo " ;/ :);/|_;| ,--.. . '''-.:::::::::::::_,' "
echo " /; :::):__,'//''\\. ,--.. \:::,:::::_,' "
echo " ;/ :::::/ //''\\. \::':__,' "
echo " ;/ :::::::,':'::\ "
echo " '; :::::::__,'. ,--.. . .,--.:'::' "
echo " '; __,..--'''-. . //''\\. .//''\\ . ,--.. :':::' "
echo " ; / \\ .//''\\ //''\\. :'::' "
echo " ; /:'::' "
echo " ; (. ;:::' "
echo " ,: ;, ;':::' "
echo " ,: ;,;':::' "
echo " ,: ;, ;'::;' "
echo " : ; ,':::; "
echo " : '.,':::;' "
echo " : '. ;::::;' "
echo " '. '-. ,-'::::; "
echo " ':_ ''--..___________..--'':::::;'' "
echo " '._::,.:,.:,:_ctr_:,:,.::,.:_;'' "
echo "________________''\/'\/\/''''''\/'\/''\/'____________________________"

else
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣
→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣
→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo " "
echo "OK: ...and here is Christopher resbumitting the job for you......"
echo " ,-.____,-. "
echo " / .. \ "
echo " /_ _\ "
echo " |'o' 'o'| "
echo " / ____________ \ "
echo " , ,' '--' '. . "
echo " _| | | |_ "

(continues on next page)

42 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

echo " / ' ' ' ' \ "
echo " (',',__________.',') "
echo " _ ' ._______, ' _/ "
echo " | | "
echo " | ,-. ,-. | "
echo " \).,(/ "
echo " gpyy ___/ ___/ "
sbatch submit_nemo

fi

exit

A chunk of the output recombination procedures are not required if the one_file option in field_def_nemo.xml is
enabled and possible (requires parallel NetCDF4 which I didn’t bother building here).

1.7 HKUST HPC3 compilation

The build uses NEMO 3.7/4.0 + XIOS 2.0 as the example. For installing other versions, extrapolate from the other
notes.

HKUST HPC3 is a cluster with SLURM. The usual module load/swap/purge/unload/list/avail works here,
and the system so far is built by default with gcc8.4 and the relevant netCDF4 and HDF5 libraries (serial and parallel
version).

1.7.1 Compilers

Note: HPC3 now has the gcc5.4 compilers at module swap gnu/8.4.0 gnu/5.4.0. MPI bindings not available
so those still need to be built.

So the first problem is compilers for XIOS. As far as I can tell (I am happy to be wrong), as of writing, XIOS doesn’t
play well with gcc versions above 6 and so using the system compilers will fail, and indeed building XIOS as per usual
hits the c++ standard and some routine naming errors (my understanding is that the newer versions of gcc are more
strict with naming). So I decided to build the compilers myself (and with it all the other libraries just for safety). See
the packages page.

After a few hours (it takes that long for a bootstrap build) I have gcc5.4 in /scratch/PI/jclmak/custom_libs/
gcc5.4/. I proceeded to relogin, unload gcc8.4 and building the libraries into the same target folder for safety (needed
to build m4). I have a specific environment file that includes

export LD_LIBRARY_PATH="/scratch/PI/jclmak/custom_libs/gcc5.4/lib:$LD_LIBRARY_PATH"

1.7. HKUST HPC3 compilation 43

J Mak NEMO notes

1.7.2 XIOS

I did the usual things of downloading XIOS and copying the arch files in

cd $PI_HOME # <--- this is the "work" directory (which is generically not ~/)
mkdir XIOS
cd XIOS
svn checkout -r 1322 http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk xios-2.0
cd xios2.0/arch
cp arch-GCC_LINUX.env arch-HKUST_HPC3.env
cp arch-GCC_LINUX.fcm arch-HKUST_HPC3.fcm
cp arch-GCC_LINUX.path arch-HKUST_HPC3.path

Since I built all the libraries separately the arch files look like the following:

arch-HKUST_HPC3.env

export HDF5_INC_DIR=/scratch/PI/jclmak/custom_libs/gcc5.4/include
export HDF5_LIB_DIR=/scratch/PI/jclmak/custom_libs/gcc5.4/lib

export NETCDF_INC_DIR=/scratch/PI/jclmak/custom_libs/gcc5.4/include
export NETCDF_LIB_DIR=/scratch/PI/jclmak/custom_libs/gcc5.4/lib

arch-HKUST_HPC3.path

NETCDF_INCDIR="-I$NETCDF_INC_DIR"
NETCDF_LIBDIR='-Wl,"--allow-multiple-definition" -L$NETCDF_LIB_DIR'
NETCDF_LIB="-lnetcdff -lnetcdf"

HDF5_LIBDIR="-L$HDF5_LIB_DIR"
HDF5_LIB="-lhdf5_hl -lhdf5 -lz"

arch-HKUST_HPC3.fcm

##
################### Projet XIOS ###################
##

%CCOMPILER mpicc
%FCOMPILER mpif90
%LINKER mpif90

%BASE_CFLAGS -ansi -w -D_GLIBCXX_USE_CXX11_ABI=0
%PROD_CFLAGS -O3 -DBOOST_DISABLE_ASSERTS
%DEV_CFLAGS -g -O2
%DEBUG_CFLAGS -g

%BASE_FFLAGS -D__NONE__ -ffree-line-length-none
%PROD_FFLAGS -O3
%DEV_FFLAGS -g -O2
%DEBUG_FFLAGS -g

%BASE_INC -D__NONE__
(continues on next page)

44 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

%BASE_LD -lstdc++

%CPP cpp
%FPP cpp -P
%MAKE make

The -D_GLIBCXX_USE_CXX11_ABI=0 is needed because we are using gcc5.4. Then I ran

cd ../
[CPPFLAGS=-I/usr/include LDFLAGS=-L/usr/lib64] ./make_xios --full --prod --arch HKUST_
→˓HPC3 |& tee compile_log.txt

I think I did go into bld.cfg and changed src_netcdf to src_netcdf4 for safety.

1.7.3 NEMO

Load subversion with module load subversion and do

cd $PI_HOME
mkdir NEMO
cd NEMO
svn checkout -r 8666 http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/trunk nemo3.7-8666
cd nemo3.7-8666/NEMOGCM/ARCH
cp OLD/arch-gfortran_linux.fcm ./arch-HKUST_HPC3.fcm

and have

arch-HKUST_HPC3.fcm
generic gfortran compiler options for linux
NCDF_INC netcdf include file
NCDF_LIB netcdf library
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FFLAGS Fortran 77 compiler flags
LD linker
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
FPPFLAGS pre-processing flags
AR assembler
ARFLAGS assembler flags
MK make
USER_INC additional include files for the compiler, e.g. -I<include dir>
USER_LIB additional libraries to pass to the linker, e.g. -l<library>

%XIOS_HOME /scratch/PI/jclmak/XIOS/xios-2.0

%CPP cpp
%CPPFLAGS -P -traditional

%XIOS_INC -I%XIOS_HOME/inc
%XIOS_LIB -L%XIOS_HOME/lib -lxios

%NCDF_INC -I/scratch/PI/jclmak/custom_libs/gcc5.4/include
(continues on next page)

1.7. HKUST HPC3 compilation 45

J Mak NEMO notes

(continued from previous page)

%NCDF_LIB -L/scratch/PI/jclmak/custom_libs/gcc5.4/lib -lnetcdf -lnetcdff -
→˓lstdc++
%FC mpif90
%FCFLAGS -fdefault-real-8 -O3 -funroll-all-loops -fcray-pointer -cpp -ffree-
→˓line-length-none
%FFLAGS %FCFLAGS
%LD %FC
%LDFLAGS
%FPPFLAGS -P -C -traditional
%AR ar
%ARFLAGS -rs
%MK make
%USER_INC %XIOS_INC %NCDF_INC
%USER_LIB %XIOS_LIB %NCDF_LIB

and build with

cd ../CONFIG
./makenemo -r GYRE_PISCES -n GYRE_testing -m HKUST_HPC3 -j0
nano GYRE_testing/cpp_GYRE_testing.fcm # (have key_top -> key_nosignedzero)
./makenemo -n GYRE_tesitng -m HKUST_HPC3 -j4

I’m going to make use of the NEMO TOOLS/REBUILD_NEMO to have a single NetCDF file so I additionally do the
following (starting from the CONFIG folder):

cd ../TOOLS
./maketools -n REBUILD_NEMO -m HKUST_HPC2

which results in a TOOLS/REBUILD_NEMO/rebuild_nemo.exe that I am going to use in my post-processing script
later.

1.7.4 Running NEMO on the HPC2

The system uses SLURM and the key commands are

• sbatch [submit_nemo]: submits the job detailed in submit_nemo (see below)

• scancel [job ID]: cancel the job

• sinfo: check status of queues available

• squeue -u $USER: check job info for $USER

sbatch could be used with arguments but I am going to have everything within submit_nemo itself. The generic one
I use (based on the one given on the NOCL page) is as follows (I have some ASCII art in there because I got bored at
some point):

#!/bin/bash

NOTE: Lines starting with "#SBATCH" are valid SLURM commands or statements,
while those starting with "#" and "##SBATCH" are comments. Uncomment
"##SBATCH" line means to remove one # and start with #SBATCH to be a
SLURM command or statement.

(continues on next page)

46 Chapter 1. NEMO compilation notes

https://nemo-nocl.readthedocs.io/en/latest/work_env/mobius.html

J Mak NEMO notes

(continued from previous page)

#===
DEFINE SOME JUNK FOR THE SUBMISSION (??? make this more flexible with e.g. queues?)
#===

#SBATCH -J gyre04 # job name
#SBATCH -o stdouterr # output and error file name
#SBATCH -n 40 # total number of mpi tasks requested
#SBATCH -N 1 # total number of nodes requested
#SBATCH -p oces # queue (partition) -- standard, development, etc.
#SBATCH -t 12:00:00 # maximum runtime

Enable email notificaitons when job begins and ends, uncomment if you need it
##SBATCH --mail-user=user_name@ust.hk #Update your email address
##SBATCH --mail-type=begin
##SBATCH --mail-type=end

Setup runtime environment if necessary
For example, setup MPI environment
source /home/jclmak/nemo_env.sh
or you can source ~/.bashrc or ~/.bash_profile

#===
LAUNCH JOB
#===

echo " _ __ ___ _ __ ___ ___ "
echo "| '_ \ / _ \ '_ ' _ \ / _ \ "
echo "| | | | __/ | | | | | (_) | "
echo "|_| |_|___|_| |_| |_|___/ v3.7 "

Go to the job submission directory and run your application
cd $PI_HOME/NEMO/nemo3.7-8666/NEMOGCM/CONFIG/GYRE_testing/EXP00/
mpiexec here because I built bound the mpi seprately
mpiexec -n 40 ./opa

#===
POSTPROCESSING
#===

kills the daisy chain if there are errors

if grep -q 'E R R O R' ocean.output ; then

echo "E R R O R found, exiting..."
echo " ___ _ __ _ __ ___ _ __ "
echo " / _ \ '__| '__/ _ \| '__| "
echo "| __/ | | | | (_) | | "
echo " ___|_| |_| ___/|_| "
echo "check out ocean.output or stdouterr to see what the deal is "

exit
else

(continues on next page)

1.7. HKUST HPC3 compilation 47

J Mak NEMO notes

(continued from previous page)

echo "going into postprocessing stage..."
cleans up files, makes restarts, moves files, resubmits this pbs

bash ./postprocess.sh >& cleanup.log
exit

fi

Here because I am not using xios_server.exe I don’t strictly need the -n 40 after mpirun (it will then just use
however many cores that’s given in #SBATCH -n). Maybe see the Oxford ARC one to see how it might work when
xios_server.exe is run alongside NEMO to do the I/O.

The following post-processing script requires a few prepping (I make no apologies for the bad code and the script being
fickle; feel free to modify as you see fit):

• copying the nn_date0 line into namelist_cfg from say namelist_ref if it doesn’t exist already, because the
time-stamps are modified by modifying nn_date0

• do a search in namelist_cfg and make sure there is only ever one mention of nn_date0 (otherwise it grabs
the wrong lines)

• nn_date0 should not begin with zeros (e.g. 10101 rather than 010101 in yymmdd)

• in the experiment folder, do mkdir RESTARTS OUTPUTS (otherwise there is no folder to copy into)

The postprocess.sh I cooked up is here:

#!/bin/bash
#! postprocess.sh
#! Script to clean up the NEMO outputs

export BASE_DIR=$PI_HOME/NEMO/nemo3.7-8666/NEMOGCM/
export MODEL=GYRE
export NUM_CPU=40

time-stamp increment, yymmdd
export DATE_INC=100000

when to stop the daisy chaining, yymmdd
export THRESH=10

error catching (only when restart files etc cannot be copied or made)
export ERR_CATCH=0

##
0) recombine files to one netcdf (restarts and/or outputs)
restarts: extract the restart file time-step stamp
based on the *0000.nc restart which should (!) always exist
rebuild the restart file in the submission directory
outputs: put them in manually and just do a grab
this assumes only files at the current time-stamp is there,
otherwise it will bug out as it grabs wrong files
##

restart files
export RES_TIMESTAMP=$(echo $(ls -d ${MODEL}_*_restart_0000.nc) | awk -F _ '{print $2 }')

(continues on next page)

48 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart $NUM_CPU
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: making the restart file in the folder"

fi
##$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart_ice $NUM_
→˓CPU

output files (assumes a grid_T always exists)
export OUT_FREQ=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $2 }')
export OUT_START=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $3 }')
export OUT_END=$(echo $(ls -d ${MODEL}_*_grid_T_0000.nc) | awk -F _ '{print $4 }')

$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_T $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_U $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_V $NUM_CPU
$BASE_DIR/TOOLS/REBUILD_NEMO/rebuild_nemo ${MODEL}_${OUT_FREQ}_${OUT_START}_${OUT_END}_
→˓grid_W $NUM_CPU

add more things in here if output freqs are different etc

##
1) pull out some variables to modify namelist file
##

pull the number out
add the increment to it for new date
subtract appropriately to get the date stamp
(e.g. 110101 - 8871 = 101230) and bulk out zeros

export OLD_DATE_STR=$(grep -ri "nn_date0" namelist_cfg)
export OLD_DATE_NUM=$(echo ${OLD_DATE_STR} | sed -e 's/[^0-9]//g' | awk '{print $NF}')
export NEW_DATE_NUM=$((OLD_DATE_NUM + DATE_INC))

8871 for 30 days a month (so the RES_STAMP=yyyy1230)
otherwise do 8870 (so the RES_STAMP=yyyy1231)
do something else for other time units
export RES_STAMP=$(printf %08d $((NEW_DATE_NUM - 8871)))

##
2) move files around and tidy up
##

cp -pv ${MODEL}_${RES_TIMESTAMP}_restart.nc ./RESTARTS/${MODEL}_${RES_STAMP}_restart.nc
cp -pv ./output.namelist.dyn ./OUTPUTS/output.namelist.dyn.${RES_STAMP}
#cp -pv ${MODEL}_${RES_TIMESTAMP}_restart_ice.nc ./RESTARTS/${MODEL}_${RES_STAMP}_
→˓restart_ice.nc
#cp -pv ./output.namelist.ice ./OUTPUTS/output.namelist.ice.${RES_STAMP}

(continues on next page)

1.7. HKUST HPC3 compilation 49

J Mak NEMO notes

(continued from previous page)

cp -pv ./ocean.output ./OUTPUTS/ocean.output.${RES_STAMP}
cp -pv ./solver.stat ./OUTPUTS/solver.stat.${RES_STAMP}
cp -pv ./stdouterr ./OUTPUTS/stdouterr.${RES_STAMP}
cp -pv ./namelist_cfg ./OUTPUTS/namelist_cfg.${RES_STAMP}

#cp -pv ./volume_transport ./OUTPUTS/volume_transport.${RES_STAMP}
#cp -pv ./salt_transport ./OUTPUTS/salt_transport.${RES_STAMP}
#cp -pv ./heat_transport ./OUTPUTS/heat_transport.${RES_STAMP}

rm -v ${MODEL}_${RES_TIMESTAMP}_restart*
rm -v restart.nc
#rm -v restart_ice.nc
rm -v ${MODEL}_*_????.nc
mv ${MODEL}*.nc ./OUTPUTS

cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart.nc ./restart.nc
if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart file into folder"

fi

#cp -pv RESTARTS/${MODEL}_${RES_STAMP}_restart_ice.nc ./restart_ice.nc
#if (($? > 0)); then
ERR_CATCH=$((ERR_CATCH + 1))
echo " ERR: copying restart_ice file into folder"
#fi

##
3) if all good, then modify namelist_cfg and resbumit
##

if (($ERR_CATCH > 0)) || ((${NEW_DATE_NUM} > $THRESH)); then
if (($ERR_CATCH > 0)); then

echo " "
echo " "
echo " "
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"
echo "ERR: caught a non-zero exit status, check cleanup.log for what the deal was"

else
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
echo "OK: grabbed time stamp ${NEW_DATE_NUM} larger than threshold ${THRESH},␣

→˓breaking..."
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣

→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

fi
echo " "
echo " "
echo " "
echo " "

(continues on next page)

50 Chapter 1. NEMO compilation notes

J Mak NEMO notes

(continued from previous page)

echo " ... a wild Totoro appeared and blocked your resubmission!"
echo " ,--'''',--.__,---[],-------._ "
echo " ,' __,' \ \--''''''==;- "
echo " ,' _,-' '/---.___ \ ___\ ,-'',' "
echo " /,-' / ;. ,.--'-.__\ _,-'' ,| ',' / "
echo " /''''''-._/,-|:\ []\,' '''-/:;-. '. / "
echo " ' ;::: || /:,; '-.\ "
echo " =.,'__,---||-.____',.= "
echo " =(:_ ||__):)= "
echo " ,'::::'----||::'--':::'._ "
echo " ,':::::::::::||::::::::::::'. "
echo " .__ ;:::.-.:::::__||___:::::.-.:::\ __, "
echo " '''-;:::(O)::::>_|| _<::::(O)::::-''' "
echo " =======;:::::'-':::::::||':::::::'-':::::\======= "
echo " ,--'';:::_____________||______________::::''----. , , "
echo " ; ::'._(| ||| |)_,'::::_,,,,,,,,,,____/,'_, "
echo " ,; :::'--._|____[]|_____|_.-'::::::::::::::::::::::::);_ "
echo " ;/ / :::::::::,||,:::::::::::::::::::::::::::::::::::/ "
echo " /; ''''''----------/,'/,__,,,,,____:::::::::::::::::::::,' "
echo " ;/ :);/|_;| ,--.. . '''-.:::::::::::::_,' "
echo " /; :::):__,'//''\\. ,--.. \:::,:::::_,' "
echo " ;/ :::::/ //''\\. \::':__,' "
echo " ;/ :::::::,':'::\ "
echo " '; :::::::__,'. ,--.. . .,--.:'::' "
echo " '; __,..--'''-. . //''\\. .//''\\ . ,--.. :':::' "
echo " ; / \\ .//''\\ //''\\. :'::' "
echo " ; /:'::' "
echo " ; (. ;:::' "
echo " ,: ;, ;':::' "
echo " ,: ;,;':::' "
echo " ,: ;, ;'::;' "
echo " : ; ,':::; "
echo " : '.,':::;' "
echo " : '. ;::::;' "
echo " '. '-. ,-'::::; "
echo " ':_ ''--..___________..--'':::::;'' "
echo " '._::,.:,.:,:_ctr_:,:,.::,.:_;'' "
echo "________________''\/'\/\/''''''\/'\/''\/'____________________________"

else
WARNING: this assumes that OLD_DATE_NUM is the only number within the file, which␣
→˓should
really be true
sed -i "s/${OLD_DATE_NUM}/${NEW_DATE_NUM}/g" namelist_cfg

echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣
→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

→˓resubmitting..."
echo "grabbed time stamp ${NEW_DATE_NUM} smaller than threshold ${THRESH},␣

(continues on next page)

1.7. HKUST HPC3 compilation 51

J Mak NEMO notes

(continued from previous page)

→˓resubmitting..."
echo " "
echo "OK: ...and here is Christopher resbumitting the job for you......"
echo " ,-.____,-. "
echo " / .. \ "
echo " /_ _\ "
echo " |'o' 'o'| "
echo " / ____________ \ "
echo " , ,' '--' '. . "
echo " _| | | |_ "
echo " / ' ' ' ' \ "
echo " (',',__________.',') "
echo " _ ' ._______, ' _/ "
echo " | | "
echo " | ,-. ,-. | "
echo " \).,(/ "
echo " gpyy ___/ ___/ "
sbatch submit_nemo

fi

exit

A chunk of the output recombination procedures are not required if the one_file option in field_def_nemo.xml is
enabled and possible (requires parallel NetCDF4 which I didn’t bother building here).

1.8 Other packages

Tested with

• gcc4.9, gcc5.4 on a linux system

• gcc4.8 on a Mac (El Capitan OSX 10.11)

The following packages are needed for NEMO and XIOS and they may need to be installed or configured accordingly.
I don’t have a windows machine handy (and I don’t really want to try it there either) so for that I would recommend
doing the following through virtualbox or something analogous (which might be another way to do it on a Mac); I am
guessing cygwin and the new Windows 10 terminals might be a possibility.

Note: I would suggest trying the following in reverse order of effort required:

1. Get someone who knows what they are doing to do it for you! Compiling the following from scratch is not the
most interesting activity and is actually quite fiddly (especially the HDF5 and NetCDF4 stuff). . . if you don’t have
access to people who can do that, then try

2. Doing it through anaconda. There you are somewhat restricted to a certain set of compilers (gcc 4.8) but
anaconda sorts out the dependencies for you. The only thing then you need to do is to force XIOS and NEMO
to use the libraries within the anaconda installation. Failing that. . .

3. Do it from scratch. I’m sorry and good luck; see below for some notes to possibly ease your pain.

52 Chapter 1. NEMO compilation notes

J Mak NEMO notes

1.8.1 Anaconda

Anaconda is a framework mostly for downloading Python packages, with the added advantage that it resolves the
package dependencies for you (cf. apt, yum on a Linux machine or port on a Mac if you have MacPorts). See the
official conda manual or some of my own notes on some things to do with installing and managing conda. I used the
full anaconda with Python 3.6 but you could use miniconda or with other pythons probably.

Note: [20 May 2020] Doing it through anaconda may well only work for Mac, because the gfortran versions does not
seem to be available with linux through anaconda. . .

First I created an environment so all the changes only apply in that environment:

conda create -n nemo python=3.6

Accept to install the basic packages for the environment. Then activate the nemo environment with

>> julian@psyduck:~/
source activate nemo
>> (nemo) julian@psyduck:~/

Now if you have compilers you want to use already then you can skip the compiler installation. On the Mac I was
dealing with there was no gcc or a Fortran compiler and I had problems with clang, so I did the following to get a set
of gcc compilers:

conda install gcc
conda install gfortran_osx-64

The second line you should change to gfortran_linux-64 if on a Linux machine. The command will add some
compiler flags that is unset when exiting from the environment. Check that the compilers are the now default compilers
by doing gcc --version (which should probably give 4.8) and which gcc (which should point to the anaconda
folder). If not, do something like echo CC and export CC=/folder/bin to force it to point to the right folder (also
do it for FC and CXX, and maybe put it in the $PATH variable; see below).

Note: One thing I found to be an issue is that while gfortran can compile a sample program through gfortran
hello.f90 -o hi with hello.f90 being

program hello
print *, "hi mum"

end program hello

Executing through ./hi could throw a library complaint:

dyld: Library not loaded: @rpath/libgfortran.3.dylib
Referenced from:
Reason: no suitable image found. Did find:

/usr/local/lib/libnetcdff.3.dylib: stat() failed with errno=13

So the problem here is that the computer is looking for the library at the wrong place. To force the computer to look at
the right place, try

export FCFLAGS=-Wl,-rpath,${CONDA_PREFIX}/lib

where ${CONDA_PREFIX} might have been defined by anaconda.

1.8. Other packages 53

https://www.anaconda.com/download/
https://conda.io/docs/index.html

J Mak NEMO notes

If you already have the MPI capabilities bound to the compilers you will use then you can skip the following. To make
life easier it is advisable to install either MPICH or OpenMPI. You could try this by

conda install -c conda-forge mpich
conda install -c conda-forge openmpi

and check whether which mpicc and in particular which mpif90, which should be pointed to the gcc compilers.
I had a similar problem with gfortran not being bound properly, which could be fixed with setting FCFLAGS, or to
compile it from scratch (see below for the way to do it for MPICH, which also works for OpenMPI with suitable changes
in the hyperlink address; do a search for this in Google).

To get NetCDF4 and its dependencies I did

conda install netcd4
conda install -c conda-forge netcdf-fortran

Do which nc-config and nc-config --all to see which paths are being pointed to. Again, you may need to add
the FCFLAGS detailed above to make sure it is pointing to the right libraries. Take note of the path where the libraries
and header files live and put those into the XIOS and NEMO files and that should be it!

1.8.2 Compiling it yourself

(Good luck!)

The following has been tried on a Linux machine. I had some problems on a Mac with Clang that I don’t know how to
fix without sudo access but it is probably fixable; I have not tried installing things with port through MacPorts partly
because it requires Xcode to be installed.

A script to do all of the following on a Linux machine in one go can be found at bottom of this page. The way I went
about it was to first choose a set of compilers and use the same set of compilers to install the dependencies, primarily
to avoid errors relating to compatibility of packages. For example, gcc4.9 was downloaded through sudo apt-get
install gcc4.9, or loaded through a network computer through something like a module load command. You
may have to look it up on the internet if you don’t have either of these.

Note: If you don’t have the right compilers you can always try and build your own from source, but it takes a while
(order of hours) and can be quite fiddly. On e.g. HKUST HPC3 I needed some older compilers to play well with XIOS
because the newer gcc compilers (version after 6) seems to be quite strict with the c++ code checking. To do this, I did

wget http://mirror.koddos.net/gcc/releases/gcc-5.4.0/gcc-5.4.0.tar.gz
tar -xvzf gcc-5.4.0.tar.gz
cd gcc-5.4.0/
./contrib/download_prerequisites
cd ..
mkdir gcc5.4
cd gcc5.4
../gcc-5.4.0/configure --prefix=/scratch/PI/jclmak/custom_libs/gcc5.4/ --enable-
→˓languages=c,c++,fortran [--disable-multilib]
make [-j4]
make [check] install

The first line grabs a packaged version of gcc, in this case 5.4.0; I chose the x.y.0 version because I have had problems
with the other versions with dependency issues with flex etc. (disclaimer: not checked overly rigourously because
copmiling take soooo long). After unzipping, the 4th line downloads the per-requisite libraries into the source folder
(gcc official website highly recommends you do not compile the dependencies yourselves manually).

54 Chapter 1. NEMO compilation notes

J Mak NEMO notes

The 6th and 7th line follows the gcc official recommendation in doing the configuring and building not in the source
directory; change the --prefix to the place where you want to store the libraries, headers and binaries. The
--disable-multilib flag forces it to build a 64-bit one only (I needed that on the particularly computer). Call-
ing make will take absolutely ages (order of hours, can speed up with giving more CPUs through the -j flag) because it
will do a bootstrap build (building needed dependencies from existing compiler then using the build tools to build the
target compiler, then sorting out the dependencies with the newly built compilers); can disable but not recommended.

Once the compilers are built then proceed as usual. Of course if you are on a cluster you probably could/should get
someone else to do this. . .

The order I did them in are:

1. mpich (to bind the set of compilers to a MPI form; I chose mpich but it should work on OpenMP too)

2. zlib (1.2.11, for HDF5)

3. hdf5 (1.8.19, for NetCDF)

4. netcdf (4.4.1.1) and netcdf-fortran (4.4.4), for XIOS

Within a folder called gcc4.9-builds, I added an extra extra_variables file containing the following:

export $BD=/home/julian/testing/gcc4.9-builds # CHANGE ME

export CC=/usr/bin/gcc-4.9
export CXX=/usr/bin/g++-4.9
export FC=/usr/bin/gfortran-4.9
export F77=/usr/bin/gfortran-4.9
export CPP=/usr/bin/cpp-4.9

if you want dynamic libraries then have this
export LD_LIBRARY_PATH=$BD/install/lib:$LD_LIBRARY_PATH

if you want static libraries then have these
export C_INCLUDE_PATH=$BD/install/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$BD/install/include:$CPLUS_INCLUDE_PATH
export LIBRARY_PATH=$BD/install/lib:$LIBRARY_PATH

not strictly required, only for overriding preferences in search for binary
export PATH=$BD/install/bin:$PATH

For my code testing it doesn’t really matter too much whether the libraries are compiled as static or dynamic because
I’m not hugely concerned about performance and stability, but static is probably safer. Set the above variables by doing
source extra_variables; upon closing the terminal the variables will be flushed. Some of these may want to be
added to ~/.bashrc for convenience. The instructions below attempts to build shared rather than static libraries, and
somewhat depends LD_LIBRARY_PATH variable being set (with the added bonus that the ldd command provides an
extra check whether the correct libraries are being called). Suggestions on how to build the packages without setting
LD_LIBRARY_PATH or build static packages are given below (using LD_LIBRARY_PATH can be dangerous, see e.g.,
here).

Note: Do for example $CC --version or echo $CC to see what the variables are set to. If you don’t want to set the
compiler variables then you need to do e.g.

CC=/usr/bin/gcc-4.9 FC= something ./configure something

1.8. Other packages 55

http://xahlee.info/UnixResource_dir/_/ldpath.html

J Mak NEMO notes

where the path points to where the compiler binary lives. This then only sets the variable temporarily for the particular
command.

Some or all of these may be skipped depending on which ones packages you have already installed and/or configured.
The following installs all the libraries and binaries to the folder specified in $BD; if you have sudo access you install it
to /usr/local, although I have found this can be very problematic if you need to remove the libraries (I’ve bricked
my computer once). . . The sub-directories in the folder are:

• source, where all the compressed files are going to live;

• build, where all the source file folders are going to live

• install, where all the compiled libraries, binaries and header files are going to live.

source and build can be deleted later.

Note: The binaries built here will not register by default unless it is added to the $PATH variable. If you are going to
add to the $PATH variable, the one that gets registered first gets priority, i.e.

echo $PATH
> /home/julian/testing/gcc4.9-builds/install/bin:/usr/local/bin

means any binaries in /home/julian/testing/gcc4.9-builds/install/bin gets used first. Do this by adding
to ~/.bashrc the following:

export PATH=/usr/local/bin:$PATH

If you don’t do this then it just means when you call the binaries you have to provide an explicit call, e.g., /home/
julian/testing/gcc4.9/build/bin/mpif90. Do for example which mpif90 to check what the mpif90 is linked
to; if you did add to $PATH then the which command above should point to the right binary.

1.8.3 MPICH

Check if there are any MPI capabilities and which compilers they are bound to:

mpicc --version
which mpicc

If you have these already they may not need to be installed. If they need to be installed separately for whatever reason,
then you could do the following. I took the source files from the MPICH website itself and chose v3.0.4 here. Being
in the $BD folder, I did:

cd $BD/source/
wget http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4.tar.gz
cd $BD/build/
tar -xvzf $BD/source/mpich-3.0.4.tar.gz
cd mpich-3.0.4
./configure prefix=$BD/install/
make -j 2
make check install

Within install/ there should now be some folders that can be pointed to for the binaries, libraries and header files to
include for later installations.

56 Chapter 1. NEMO compilation notes

http://www.mpich.org/static/downloads/

J Mak NEMO notes

Note: The ./configure prefix= step requires an absolute (not relative) path for the installation folder.

1.8.4 zlib and HDF5

Check whether HDF5 exists first (may still need to be installed again for compatibility reasons). h5copy is the command
that should exist if HDF5 is installed:

which h5copy
h5copy --version

If you still want to install both zlib and HDF5, then do the following (following the instructions on the Unidata UCAR
website). The raw files are taken from the HDF5 website using HDF5 v1.8.19. Again, with $BD as defined (don’t
include -fPIC or --enabled-shared if you want the libraries to be static):

cd $BD/source/
wget http://www.zlib.net/zlib-1.2.11.tar.gz
cd $BD/build/
tar -xvzf $BD/source/zlib-1.2.11.tar.gz
cd zlib-1.2.11
CFLAGS=-fPIC ./configure --prefix=$BD/install/
make -j 2
make check install

cd $BD/source/
wget https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.19/src/hdf5-1.8.19.
→˓tar.gz
cd $BD/build/
tar -xvzf $BD/source/hdf5-1.8.19.tar.gz
cd hdf5-1.8.19
#CPPFLAGS=-I$BD/install/include LDFLAGS=-L$BD/install/lib \
CFLAGS=-fPIC ./configure --enable-shared --enable-fortran --enable-cxx
--prefix=$BD/install/
make -j 2
make check install
cd $BD

Note: If LD_LIBRARY_PATH is set then zlib should be detected by the HDF5 install. If not, consider including the
commented out CPPFLAGS and LDFLAGS line (the --with-zlib command no longer works in the newer HDF5).

HDF5 checking and installation can take a while. If it’s more that 30 mins however it probably has crashed.

If a shared build option was on, then you can do ldd h5copy (or wherever h5copy is installed at if the directory has
not been added to $PATH) to check that libhdf5 does point to where you think it should point to. If it isn’t, then try
the first point in this note.

If an error shows up saying recompile with -fPIC, then trying doing a static build. Replace --enable-shared
with --disable-shared and do the first point in this note, possibly adding LIBS="-lz -lhdf5 etc.; see here for a
guide.

1.8. Other packages 57

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf-install/Quick-Instructions.html
https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf-install/Quick-Instructions.html
https://www.unidata.ucar.edu/software/netcdf/docs/building_netcdf_fortran.html

J Mak NEMO notes

1.8.5 NetCDF4

Check whether NetCDF4 exists first (may still need to be installed again for compatibility reasons). nc-config is the
command that should exist if NetCDF4 is installed, and shows where it is installed and what compilers were used to
build it.

nc-config all

If you still want to install it, then do the following (following the instructions on the Unidata UCAR website). The raw
files are taken from the the NetCDF4 website, using netcdf v4.4.1.1 and netcdf-fortran v4.4.4 (don’t include -fPIC or
--enabled-shared if you want the libraries to be static):

cd $BD/source/
wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.4.1.1.tar.gz
cd $BD/build/
tar -xvzf $BD/source/netcdf-4.4.1.1.tar.gz
cd netcdf-4.4.1.1
#CPPFLAGS=-I$BD/install/include LDFLAGS=-L$BD/install/lib \
./configure --enable-netcdf4 --enable-shared --prefix=$BD/install/
make -j 2
make check install

cd $BD/source/
wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-fortran-4.4.4.tar.gz
cd $BD/build/
tar -xvzf $BD/source/netcdf-fortran-4.4.4.tar.gz
cd netcdf-fortran-4.4.4
#CPPFLAGS=-I$BD/install/include LDFLAGS=-L$BD/install/lib \
./configure --enable-shared --prefix=$BD/install/
make -j 2
make check install
cd $BD

Note: NetCDF4 checking and installation can take a while. If it’s more that 30 mins however it probably has crashed.

If a shared build option was on, then you can do ldd ncdump (or wherever ncdump was installed if the directory has
not been added to $PATH) and check that libnetcdf, libhdf5 and libz really does point to where you think it should
point to. If not, consider doing something similar to the HDF5 note above.

If an error shows up saying recompile with -fPIC, then trying doing a static build (I had this problem on one of
the computers where the Fortran part is static). See HDF5 note above.

I had a problem with not having the m4 package, which I just installed as the installation commands above, with the
binaries found from wget ftp://ftp.gnu.org/gnu/m4/m4-1.4.10.tar.gz. This is not in the script below.

This should be it! Try ./install/bin/nc-config --all and/or ./install/bin/nf-config --all to see
where everything is configured. The things in build/ and source/ may now be deleted.

58 Chapter 1. NEMO compilation notes

https://www.unidata.ucar.edu/software/netcdf/netcdf-4/newdocs/netcdf-install/Quick-Instructions.html

J Mak NEMO notes

1.8.6 Combined shell script

A script that does all of the above in one go may be found in the following commands (use at your own risk):

mkdir gcc4.9-builds/ # CHANGE ME
cd gcc4.9-builds/ # CHANGE ME
wget https://raw.githubusercontent.com/julianmak/NEMO-related/master/docs/compilation_
→˓notes/compile_dependencies.sh
chmod +x compile_dependencies.sh

Before you execute the shell script with ./compile_dependencies.sh, make sure the compilers are pointed to ap-
propriately. You can do this in ~/.bashrc (see first code block on this page) or within the shell script itself (it is
commented out at the moment). If some packages already exist and you don’t want them installed, comment the ap-
propriate lines.

1.8. Other packages 59

J Mak NEMO notes

60 Chapter 1. NEMO compilation notes

CHAPTER

TWO

OTHER NEMO NOTES

Here you will find some of my notes relating to NEMO.

If you are interested in building a model, see how I went about doing it in the model building subsection.

2.1 Adding code to NEMO

2.2 Other NEMO packages

Some useful tools that come with NEMO are available in the analog of the TOOLS folder. These are built using the
ARCH files as you would for building an experiment with e.g.

./maketools -n REBUILD_NEMO -m HKUST_HPC2

Notes on the ones I have used may be found here.

2.2.1 REBUILD_NEMO

XIOS can combine the output-per-CPU cells into one global file, but by default the restart files and mesh_mask.nc
files are output per CPU, so it is useful to recombine them. This can be done through the REBUILD_NEMO package.

Build as usual, and the resulting output should be a rebuild_nemo.exe in the folder, to be driven by the script
rebuild_nemo. The way to use it is to call the script as, for example,

$BASE_DIR/tools/REBUILD_NEMO/rebuild_nemo ${MODEL}_${RES_TIMESTAMP}_restart $NUM_CPU

where $BASE_DIR is wherever the folder lives, the things to be combined look
like ${MODEL}_${RES_TMESTAMP}_restart_0000.nc (e.g. mesh_mask_00??.nc,
UNAGI_00051840_restart[_ice].nc, etc.), and $NUM_CPU are the number of files to combine (e.g. if we
use 96 cores then we get mesh_mask_0000.nc to mesh_mask_0095.nc, and we should do export NUM_CPU=96).

Note: In NEMO 4.0 versions an error may come up with undefined reference to iarg_ and getarg_. This
seems to arise from src/rebuild_nemo.f90 where both iarg and getarg are defined as extrinsic. With
gfortran this seems to be fixed by simply changing the attribute to intrinsic.

61

J Mak NEMO notes

2.2.2 SECTIONS_DIADCT

2.2.3 WEIGHTS

2.2.4 DOMAINcfg

This package generates the domain_cfg.nc file that encodes the grid locations and spacings, and is recommended for
creating new configurations, mostly because the vertical grid spacings with partial steps correction are a bit weird to try
and do manually. From the readme file in there, you seem to need to use xios1 to compile this; see the :ref:`README
<sec:nemo36:>`_ for how various things to watch out for.

When compiled the executable is called make_domain_cfg.exe, and it expects to read a bathy_meter.nc (links are
ok) and a namelist_cfg file. The namelist_cfg file should contain the various settings for horizontal and vertical
grid spacing, which should be consistent with the content in bathy_meter.nc. An example namelist_cfg is the
following:

!---
&namcfg ! parameters of the configuration
!---

!
ln_e3_dep = .true. ! =T : e3=dk[depth] in discret sens.
! ! ===>>> will become the only possibility in v4.0
! ! =F : e3 analytical derivative of depth function
! ! only there for backward compatibility test with v3.6
! !
cp_cfg = "UNAGI" ! name of the configuration
jp_cfg = 100 ! resolution of the configuration
jpidta = 90 ! 1st lateral dimension (>= jpi)
jpjdta = 26 ! 2nd " " (>= jpj)
jpkdta = 31 ! number of levels (>= jpk)
jpiglo = 90 ! 1st dimension of global domain --> i =jpidta
jpjglo = 26 ! 2nd - - --> j =jpjdta
jpizoom = 1 ! left bottom (i,j) indices of the zoom
jpjzoom = 1 ! in data domain indices
jperio = 1 ! lateral cond. type (between 0 and 6) [1 is EW␣

→˓periodicity]
/
!---
&namzgr ! vertical coordinate
!---

ln_zps = .true. ! z-coordinate - partial steps
ln_linssh = .true. ! linear free surface

/
!---
&namdom !
!---

jphgr_msh = 3 ! type of horizontal mesh
ppglam0 = 0.0 ! longitude of first raw and column T-point␣

→˓(jphgr_msh = 1)
ppgphi0 = -50.0 ! latitude of first raw and column T-point␣

→˓(jphgr_msh = 1)
ppe1_deg = 999999.0 ! zonal grid-spacing (degrees)
ppe2_deg = 999999.0 ! meridional grid-spacing (degrees)

(continues on next page)

62 Chapter 2. Other NEMO notes

J Mak NEMO notes

(continued from previous page)

ppe1_m = 100000.0 ! zonal grid-spacing (metres)
ppe2_m = 100000.0 ! meridional grid-spacing (metres)
ppsur = 999999.0 ! ORCA r4, r2 and r05 coefficients
ppa0 = 999999.0 ! (default coefficients)
ppa1 = 999999.0 !
ppkth = 18.0 !
ppacr = 10.0 !
ppdzmin = 10.0 ! Minimum vertical spacing
pphmax = 3000.0 ! Maximum depth
ldbletanh = .FALSE. ! Use/do not use double tanf function for␣

→˓vertical coordinates
ppa2 = 999999.0 ! Double tanh function parameters
ppkth2 = 999999.0 !
ppacr2 = 999999.0 !

/

Here, the configuration is called UNAGI. The jp[ijk]data is the number of grid cells in (𝑥, 𝑦, 𝑧), and I chose
jp[ij]glo to be consistent with the choice of horizontal sizes. The jperio denotes the periodicities (see src/
domcfg.f90 for the choices). The present model uses a Cartesian grid on a 𝛽-plane corresponding to jphgr_msh =
3 (see src/domhgr.f90 for choices), and is centred at longitude 0 and latitude 50 S (see ppglam0 and ppgphi0). The
grid spacing here is 100 km, correpsonding to ppe[12]_m; the values of 999999.0 are options that are not used.

For the vertical grid, ln_zps switches on the partial step correction and takes into account bathy_meter.nc. The
vertical spacing is governed through the parameters ppkth, ppacr, ppdzmin and pphmax ([MI96]; unless you use the
double tanh option).

Note: Note NEMO 4.2 seems to be using different namings and convention (see here). As of writing DOMAINcfg still
reads the jperio option but separately defines the l_[IJ]perio and ldNFold logical flags for NEMO to read.

2.2.5 NESTING (AGRIF)

2.3 GYRE: rotated gyre model

2.3.1 Brief overview and sample outputs

2.3.2 How to get the model running

GYRE is hard-coded into NEMO so nothing needs to be provided to run it out of the box.

2.3. GYRE: rotated gyre model 63

https://sites.nemo-ocean.io/user-guide/migration.html

J Mak NEMO notes

2.3.3 Custom analysis scripts

2.4 ORCA: global configuration

2.4.1 Brief description

Fig. 1: Absolute speed of surface currents between ORCA at a nominal horizontal resolution of 1/12 ∘ and 1 ∘ (there
is a refinement towards the equators). The ORCA 1/12 ∘ data was obtained from the NOC Jasmin archives.

2.4.2 How to get the model running

2.4.3 Custom analysis scripts

2.5 UNAGI: custom channel model

2.5.1 Brief overview and sample outputs

UNAGI (naming based on EEL which was original due to Marina Levy) is a re-entrant𝛽-plane channel with temperature
as the thermodynamic variable that is largely based on Dave Munday’s MITgcm channel model reported in [MJM15],
as an idealised model to the Antarctic Circumpolar Current. The model at present takes in some to-be specified
bathymetry, wind stress profile and initial state, which may be customised accordingly within the gen_UNAGI_fields.
ipynb, which may be found at the host GitHub repository.

With the choice of SST restoring over the surface layer, to maintain a sensible thermocline the vertical tracer diffusivity
is enhanced in a sponge region to the north (see [MJM15]). See e.g. [AMF11] for alternative model formulations.
Some model set up choices:

1. relatively long re-entrant zonal channel, no topography except ridge in the middle of the channel extending up to
half the depth of the domain

2. fixed sinusoidal wind stress with some peak wind stress value 𝜏0
3. SST restoring (a relatively hard restoring, the rn_dqdt value in namelist_cfg has been amplified by a factor

of 2)

4. linearly varying temperature profile at the surface with 𝑒-folding depth of 1000 metres

64 Chapter 2. Other NEMO notes

http://gws-access.ceda.ac.uk/public/nemo/
https://github.com/julianmak/UNAGI_NEMO

J Mak NEMO notes

5. linear friction

6. linear EOS with only temperature as the thermodynamic variable

7. sponge region to the north where vertical diffusivity is amplified by a factor of 250 from the background value
of 10−5 m2 s−1

The diagram below shows the surface relative vorticity (in units of s−1) from the 10km resolution model with bihar-
monic tracer diffusion and no eddy parameterisation, associated with a rich eddying field. Click here for an animation.

2.5.2 How to get the model running

If you just want things to work then try the zenodo repository, which has all the NEMO modified sources files and
model input files required. Some sample analysis code are given in host GitHub repository.

It is also fairly quick to recreate the forcing files from scratch, and is likely more informative for making your own
models. The relevant notebook is gen_UNAGI_fields.ipynb, given also in host GitHub repository. The code can
almost be run straight except for one step; see below notes.

2.5.3 Building the custom model

The following approach is strictly for NEMO models beyond v3.6, where one can build a customised model through
providing a domcfg.nc, which is the main goal here. The details are given below are what I did for the idealised
channel model UNAGI; see here for a step-by-step guide of how I did it.

The biggest obstacle in generating the appropriate domcfg.nc file for me was in transferring the code that modifies
the vertical spacing variables e3t/u/v/w to have a partial cell description. I first tried to brute force it by writing
from scratch a file that provides all the relevant variables needed in the domcfg.nc; see for example the input required
in ORCA2. I gave up after a while and fell back to using the NEMO native [MI96] grid and the TOOLS/DOMAINcfg
package, as follows:

1. in an external folder (e.g., ~/Python/NEMO/UNAGI), create the bathymetry data through a program of your choice
(e.g. Python), and output it as a netCDF file (e.g. bathy_meter.nc)

2. link/copy it as bathy_meter.nc (the tool requires that specific naming) into the TOOLS/DOMAINcfg that comes
with NEMO

3. modify the namelist_cfg file accordingly for the horizontal and vertical grid spacing parameters (see here for
usage and compiling notes), and the one I used for this model is given as an example in that packages page

4. a domcfg.nc should result (if not, see ocean.output for messages), copy it back into the working folder in
step 1

2.5. UNAGI: custom channel model 65

https://i.imgur.com/bT37Mo4.gifv
http://dx.doi.org/10.5281/zenodo.8002828
https://github.com/julianmak/UNAGI_NEMO
https://github.com/julianmak/UNAGI_NEMO
https://github.com/julianmak/NEMO-related/blob/master/UNAGI/readme_of_sorts.txt
https://github.com/julianmak/NEMO-related/blob/master/UNAGI/gen_NEMO_UNAGI_fields.ipynb

J Mak NEMO notes

5. open domcfg.nc and use those variables to create the state.nc and forcing.nc file again in the program of
your choice (this is mostly to keep consistency; I did it in Python)

6. copy the domcfg.nc, state.nc and forcing.nc (I prefixed them with something, e.g. UNAGI_domcfg_R010.
nc) and modify the namelist_cfg accordingly, e.g.

!---
&namrun ! parameters of the run
!---

cn_exp = "UNAGI" ! experience name
nn_it000 = 1 ! first time step
nn_itend = 8640 ! last time step
nn_date0 = 10101 !
nn_leapy = 30 ! Leap year calendar (1) or not (0)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)

nn_euler = 1 ! = 0 : start with forward time step if ln_rstart=T
nn_rstctl = 0 ! restart control ==> activated only if ln_rstart=T
! ! = 0 nndate0 read in namelist
! ! = 1 nndate0 check consistancy between namelist␣

→˓and restart
! ! = 2 nndate0 check consistancy between namelist␣

→˓and restart
nn_stock = 8640 ! frequency of creation of a restart file (modulo␣

→˓referenced to 1)
nn_write = 8640 ! frequency of write in the output file (modulo␣

→˓referenced to nn_it000)
/
!---
&namcfg ! parameters of the configuration
!---

ln_read_cfg = .true. ! (=T) read the domain configuration file
! ! (=F) user defined configuration ==>>> see usrdef(_...)␣

→˓modules
cn_domcfg = "domcfg_UNAGI" ! domain configuration filename

/
...

That is more or less it. Once you can build the domain variables the model will at least run and the rest is more to do
with experimental design.

2.5.4 Hacking NEMO to get UNAGI

That two main things that needed hacking into NEMO for UNAGI are the vertical tracer diffusion (in the sponge region
to the north) and possible combination with the GEOMETRIC parameterisation, the latter could be found here. For
the vertical tracer diffusion given in zdfphy.f90, I hacked an existing variable so that it is dual use to give a specified
meridional profile in the vertical diffusivity; search for the variable rn_avt_amp in this file to see how I did it.

An extra hack I did was to shut off a default warning in ldftra.f90 (with modifications to trazdf.f90 for complete-
ness) that biharmonic tracer diffusion cannot be used with when the GM scheme (ldfeiv) is used. Normally if you
are using GM you also use isoneutral diffusion rather than biharmonic diffusion, but for my case I do intend on having
that specific combination.

66 Chapter 2. Other NEMO notes

https://github.com/julianmak/NEMO-related/blob/master/UNAGI/gen_NEMO_UNAGI_fields.ipynb
https://nemo-related.readthedocs.io/en/latest/GEOMETRIC/geometric.html
https://github.com/julianmak/UNAGI_NEMO/blob/main/MY_SRC/zdfphy.F90

J Mak NEMO notes

2.6 pyCDFTOOLS

For various reasons (mostly personal preference and forcing myself to write in Python) I made a translation of sorts of
CDFTOOLS in Python. pyCDFTOOLS I think is:

• slightly more flexible, e.g., no need to recompile if variable name changes between files

• saves on the creation and reading of files

• everything done within Python, rather than Fortran and MATLAB say

• marginally more up-to-date, e.g. dealings with TEOS-10 equation of state

On the other hand, it is

• not as complete, because I only translated ones that I needed (see here for list). . .

• not as established and probably slightly error prone

• not as fast (though things that I could not vectorise I used JIT to speed up the looping)

• not NEMO code compliant (CDFTOOLS is designed to conform to NEMO code conventions)

An additional criticism I have is that I wrote pyCDFTOOLS more like Fortran/MATLAB and not making full use of
the Python functionalities (e.g., Panda and so forth). I have some idea how I might get it to work but watch this space. . .

The routine naming conventions of the programs are basically the same as CDFTOOLS (see MEOM page). All codes
with the prefix cdf are based on CDFTOOLS; all errors are entirely mine (any things I did change are commented in
the code).

Grab it with:

git clone https://github.com/julianmak/NEMO-related

Some slightly more configuration/model specific Python scripts and notebooks are in other folders (e.g., GYRE and
ORCA). I tend to just do

cd GYRE
rsync -arv ../pyCDFTOOLS .

which then means the scripts and notebooks within the folder have access to the module, and it separates out a version
that I do testing on.

CDFTOOLS itself depends on the following packages (the things I think that come as standard are omitted):

• numba (for JIT to speed up loops)

• numpy (for tools)

• netCDF4 (for reading)

• scipy (for the occasional times when a MATLAB file is read)

The configuration specific programs depend additionally on Matplotlib and a whole load of other ones for the ORCA
configuration; see the relevant pages. I installed most of the things through Anaconda; see the Python page here for my
notes on these.

Use these scripts at your own risk and feel free to modify them (rights etc. as stated in the license and in line with
the CDFTOOLS one). For comparison purposes you may also want to grab CDFTOOLS to compare results (see the
CDFTOOLS page):

git clone https://github.com/meom-group/CDFTOOLS

2.6. pyCDFTOOLS 67

https://github.com/meom-group/CDFTOOLS
https://github.com/julianmak/NEMO-related/tree/master/pyCDFTOOLS
http://meom-group.github.io/doc/CDFTOOLS/
https://www.anaconda.com/download/#linux
https://github.com/meom-group/CDFTOOLS

J Mak NEMO notes

Note: The programs I have uploaded I was satisfied enough with the tests I have done, but don’t just take my word for
it :-)

68 Chapter 2. Other NEMO notes

CHAPTER

THREE

GEOMETRIC OUTLINE

TL;DR [08 Jun 2023]: My versions of the GEOMETRIC codes for NEMO and/or MITgcm can be found in this
repository. The official NEMO one may be found here, with thanks to Andrew Coward at NOC-Southampton. Current
version does not support the newer RK3 time-step (still needs the leap-frog), but that is on a to-do list.

GEOMETRIC (Geometry and Energetics of Ocean Mesoscale Eddies and Their Rectified Impact on Climate) is an
approach to representing the unresolved turbulent eddies in ocean climate models, first derived in [MMB12]. David
Marshall’s page has an excellent outline and summary of GEOMETRIC, so this page will focus on outlining the details
relating to the NEMO implementation.

The implementation of GEOMETRIC was done in NEMO by providing a new module ldfeke.f90 and adding ap-
propriate calls and variables to ldftra.f90, step.f90 step_oce.f90 and nemogcm.f90. This was initially done
in SVN version 8666, which is somewhere between the 3.6 stable and 4.0 beta, by myself and Gurvan Madec back in
November 2017. The current implementation of GEOMETRIC is what may be considered GM-based [GM90] and fol-
lows the prescription described in [MMMM22]. The GEOMETRIC scaling gives 𝜅gm = 𝛼𝐸(𝑁/𝑀2) (see below for
symbol definitions). While 𝛼 is prescribed and 𝑀 and 𝑁 are given by the coarse resolution ocean model, information
relating to 𝐸 is provided by a parameterised eddy energy budget. The recipe for GEOMETRIC then is as follows:

1. time-step the parameterised eddy energy budget to get 𝐸 with info provided by the GCM

2. calculate the new 𝜅gm

3. use the existing GM routines with new 𝜅gm and time-step the GCM. Cycle as appropriate.

The current NEMO implementation considers an eddy energy field that varies in longitude, latitude and time (and so
𝜅gm inherits this spatio-temporal dependence), given by

d

d𝑡

∫︁
𝐸 d𝑧 +∇ ·

(︂
(�̃�− |𝑐|𝑒1)

∫︁
𝐸 d𝑧

)︂
=

∫︁
𝜅gm

𝑀4

𝑁2
d𝑧 − 𝜆

∫︁
𝐸 d𝑧 + 𝜈𝐸∇2

∫︁
𝐸 d𝑧,

(respecively, the time-evolution, advection, source, dissipation and diffusion of eddy energy), with 𝜅gm calculated as

𝜅gm = 𝛼

∫︀
𝐸 d𝑧∫︀

Γ(𝑀2/𝑁) d𝑧
Γ(𝑧).

The symbols are as follows:

symbol definition units
𝛼 eddy efficiency parameter non-dimensional, |𝛼| ≤ 1 −−
𝐸 total eddy energy 𝑚2 𝑠−2

𝑀,𝑁 mean horizontal and vertical buoyancy gradient 𝑠−1

�̃� depth-mean flow 𝑚2 𝑠−1

|𝑐| magnitude of long Rossby phase speed of 1st baroclinic mode 𝑚2 𝑠−1

𝜅gm Gent–McWilliams coefficient 𝑚2 𝑠−1

𝜆 linear damping rate of eddy energy 𝑠−1

𝜈𝐸 Laplacian diffusion of eddy energy 𝑚2 𝑠−1

69

https://github.com/julianmak/GEOMETRIC_code
https://forge.nemo-ocean.eu/nemo/nemo/-/merge_requests/202
https://www.marshallocean.net/geometric
https://www.marshallocean.net/geometric
https://scholar.google.com/citations?user=Ewgtd20AAAAJ&hl=fr

J Mak NEMO notes

3.1 Advection

The advection of eddy energy is given in flux form and has a contribution from the depth-mean flow as well as a
contribution associated with the westward propagation of eddies at the long Rossby phase speed (motivated by e.g.
[CSS11] and [KM14]). The advection is by the barotropic mean flow already computed in NEMO, with a first order
upwind scheme. The baroclinic Rossby wave speed is obtained by computing the eigenvalue associated with the first
baroclinic mode (see e.g. eq. 6.11.8 of [Gil82]) and uses two subroutines (eke_rossby and eke_thomas) via the WKB
expression given in [CdeSzoekeS+98] (their equation 2.2):

𝑐𝑛 ≈ 1

𝑛𝜋

∫︁ 0

−𝐻

𝑁(𝑧) d𝑧

and the long-phase speed that the total eddy energy is to be advected at is computed as (e.g. eq. 12.3.13 of [Gil82])

|𝑐𝑝| ≈
𝛽

𝑓2
0

𝑐21 = 𝑐21
cos𝜑0

2Ω𝑅 sin2 𝜑0

In practice the expression diverges at the equator and the actual wave contribution to eddy energy advection as imple-
mented in GEOMETRIC is bounded above by the magnitude tropical planetary wave phase speed (e.g. eq. 12.3.14 of
[Gil82]), i.e.,

|𝑐| = min (|𝑐𝑝|, |𝑐1/3|)

See here for usage and implementation details.

Note: As of Feb 2019 the removal of the routines to solve the tri-diagonal eigenvalue problem means the nn_wav_cal
variable in namelist_cfg has been removed.

3.2 Source

The source of mesoscale eddy energy here is only from the slumping of neutral surfaces through the eddy induced
velocity as parameterised by the GM scheme (note that it is positive-definite). These are straight-forwardly computed
as is (rather than using the quasi-Stokes streamfunction) using the already limited slopes computed in NEMO. See here
for implementation details.

3.3 Dissipation

The damping of eddy energy is linearly damped and the coefficient is specified in namelist_cfg as a time-scale in
days (which is subsequently converted to per seconds in ldf_eke_init). There is an option to read in an externally
prepared NetCDF file geom_diss_2D.nc that varies in longitude and latitude in anticipation of further investigation.
See here for usage details, here for a sample Python Notebook to generate the file, and [MAD+22] and the associated
Zenodo repository for some scripts to sample an estimate onto a grid onto a global grid (obtained from a finite element
calculation, requires the vtk package in Python to probe the spherical immersed mesh).

70 Chapter 3. GEOMETRIC outline

https://doi.org/10.5281/zenodo.6559892

J Mak NEMO notes

3.4 Diffusion

The diffusion of eddy energy is through a Laplacian (cf. [EG08]), done through relevant copy and pasting of code
that are in other NEMO modules. The GEOMETRIC scheme is actually stable (most likely because of the upwinding
scheme). The diffusion may be switched off by setting rn_eke_lap = 0. in namelist_cfg which will bypass the
relevant loop in ldf_eke.

3.4. Diffusion 71

J Mak NEMO notes

72 Chapter 3. GEOMETRIC outline

CHAPTER

FOUR

MISC. CONTENT

This manual of sorts is generated using Sphinx in reStructredText, uploaded to GitHub and generated using ReadThe-
Docs The syntax for the relevant rst files I mostly took from the MITgcm ReadTheDocs manual. Included here [TO
DO, 04 Jul 2018] are some notes and terminal commands I used to get the underlying python things (which acts as
backend for sphinx and the sample notebooks) working.

4.1 Python / Anaconda notes

At some point I encountered some problem with plotting data in MATLAB (to do with the tripolar grid meaning the
co-ordinate files were not monotonic so MATLAB hated it), and I went over to Python because the Cartopy and Iris
packages lets me do data projection and plotting in different projects fairly easily. Here are some notes for Python and
Anaconda which may be useful (the latter might be useful for getting the libraries that NEMO and XIOS need).

4.1.1 Anaconda

Most of these are taken from the official conda manual The installation for conda (or the lighter version miniconda) is
somewhat dependent on the OS and the instructions are here You end up downloading a bash file that you run in the
terminal, and from there you can accept and change some of the settings accordingly. No administrator rights should
be required, though it does mean the installed packages may not be shareable. The installation will ask if you want to
add to your $PATH variable, which I accepted (it means the some of the anaconda based binaries take precedence over
the system ones).

One conda is installed, I would recommend creating an environment so that if damage is to occur, it is only within
the environment which may be deleted easily without touching other things. The creation, entering and leaving of the
environment is done by:

>> julian@psyduck:~/$ conda create -n nemo python=3.6
...
>> julian@psyduck:~/$
>> julian@psyduck:~/$ source activate nemo
>> (nemo) julian@psyduck:~/$
>> (nemo) julian@psyduck:~/$ source deactivate
>> julian@psyduck:~/$

The first command creates and environment called nemo that uses python 3.6, and the other commands are self ex-
planatory. An environment may be removed by issuing the command

conda remove --name nemo --all

Packages are installed through (make sure you are in an environment first)

73

http://www.sphinx-doc.org/en/master/
http://docutils.sourceforge.net/rst.html
https://github.com/julianmak
https://readthedocs.org/
https://readthedocs.org/
https://mitgcm.readthedocs.io/en/latest/index.html
https://conda.io/docs/index.html
https://conda.io/docs/user-guide/install/index.html

J Mak NEMO notes

conda install netcdf
conda install -c conda-forge netcdf-fortran

Some packages need to be searched for in the forge.

Note that while the environment is active some commands take precedence over others, and a bit of care is needed to
make sure the ones you intend to call really are the ones that are called (e.g. my mercurial command hg seems to be
overwritten on my machine when I am in my environment). Check with things like which python for example which
shows which binary the command python is actually calling.

4.1.2 Python

I mostly develop code in a notebook because I am too heavily influenced by MATLAB. Notebooks (in particular with
Jupyter) lets you write code within cells that you run and see outputs then and there which is what I am used to. Later
on I do write code in a text editor when I have more specific things I want need to do.

I normally do the following to get what I need. Within the environment:

conda install scipy
conda install numpy
conda install matplotlib
conda install jupyter
conda install -c conda-forge cartopy
conda install -c conda-forge iris

I normally install NetCDF as well. Numpy and scipy gives the number crunching stuff I normally need. Matplotlib
gives most of the plotting capabilities. Cartopy and iris are the map and projection packages, and jupyter is the
notebook stuff. To trigger the notebook, I normally do from a terminal

jupyter notebook 2>/dev/null &

just to suppress the terminal outputs. The notebook opens in a browser and you do coding in there (I think there
is another software that lets you open and edit notebooks somewhere else though I’ve never used it); it’s basically
ipython but in a browser. Note that just closing the tabs does not necessarily close the notebook; you need to do
files>>close and halt. Also, just because the relevant pages are closed in the browser does not mean the notebook
server is shutdown either; you need to click logout on the top right corner (assuming you are not using a custom theme
which suppresses that). To kill it in the terminal, either find the job through jobs and use kill %n or do

jupyter notebook list
>> Currently running servers:
>> http://localhost:8888/?token=7774a1ace4c2a0a1e098a5900f30c67310074a7250bd6c0d :: /
→˓home/julian/GitRepo/pydra/wrapper
>> http://localhost:8889/?token=00b793728b03e2536b5a07a793bbd2a9fc1342469f3cf28d :: /
→˓home/julian/Documents/NEMO

jupyter notebook stop 8888
jupyter notebook list
>> Currently running servers:
>> http://localhost:8889/?token=00b793728b03e2536b5a07a793bbd2a9fc1342469f3cf28d :: /
→˓home/julian/Documents/NEMO

74 Chapter 4. Misc. content

J Mak NEMO notes

4.1.3 Some Python banana skins

The big banana skin with Python to watch out for is that indexing starts at 0 (rather than 1 in MATLAB), and index
slicing normally omits the last entry, e.g.

x_vec = [1, 2, 3, 4, 5, 6]
x_vec[0:-1]
>> [1, 2, 3, 4, 5]
x_vec[1:4]
>> [2, 3, 4]
x_vec[0::]
>> [1, 2, 3, 4, 5, 6]
x_vec[-1]
>> 6
x_vec[-2]
>> 5

Contrast this to MATLAB which would be

x_vec = [1, 2, 3, 4, 5, 6]
x_vec(0:end-1)
>> 1, 2, 3, 4, 5
x_vec(2:4)
>> 2, 3, 4
x_vec(:)
>> 1, 2, 3, 4, 5, 6
x_vec(end)
>> 6
x_vec(end - 1)
>> 5

Another banana skin with python is that data is not necessarily copied when defining new variables. For example:

x_vec = [1, 2, 3, 4, 5, 6]
y_vec = x_vec
y_vec[0] = 2
y_vec
>> [2, 2, 3, 4, 5, 6]
x_vec
>> [2, 2, 3, 4, 5, 6]

This is especially dangerous if you, like me, do the following in MATLAB:

x_vec = zeros(6)
y_vec = x_vec
z_vec = x_vec

If you really mean to do a copy, do the following:

from copy import deepcopy
x_vec = [1, 2, 3, 4, 5, 6]
y_vec = x_vec
z_vec = deepcopy(x_vec)
y_vec[0] = 2

(continues on next page)

4.1. Python / Anaconda notes 75

J Mak NEMO notes

(continued from previous page)

y_vec
>> [2, 2, 3, 4, 5, 6]
x_vec
>> [2, 2, 3, 4, 5, 6]
z_vec
>> [1, 2, 3, 4, 5, 6]

Python is really slow with loops, so the more vectorising commands you can use, the better! If you have routines
that you have to use loops in (e.g. transformation of data from Cartesian co-ordinates to density co-ordinates through
binning into density bins), then consider using cypthon (write code in C but call it through Python), f2py (same but
for Fortran), or numba/JIT (compile and run loops, usually on the order of 200 speed up; restricted to fairly low level
commands).

4.2 sphinx notes

(working notes)

• https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst

• To get bibtex working on ReadTheDocs a requirements.txt may be needed.

Having the following in there got the sphinx-bibtex extension working for me.

conda install sphinx pip install sphinx_rtd_theme pip install sphinxcontrib-bibtex

sphinx>=1.7.0b1
sphinxcontrib-bibtex

4.3 Git commands

Git is s version control software. Similar software exist (e.g. `Mercurial <www.mercurial-scm.org >`_, Subversion),
but I almost exclusively use Git now for my own things (NEMO uses subversion but the only thing I ever do is svn
checkout LOCATION -r VERSION, so it’s not really using it. . .)

I personally use Git for backup mostly, occasionally reverting files, as well as hosting websites (e.g. here and here).
For my kind of files (mostly text files, as source LaTeX files, html or bits of code) I find it much more convenient and
safer than saying using Dropbox (manual version control is too error prone for me). I haven’t personally used Git that
much in terms of collabroative work at the moment, so the commands below are going to be skimpy on those related
commands.

4.3.1 Repositories

Github is my go to for making repositories, partly because it can render Jupyter notebooks I use a lot. Github used to
only have public repositories, but now they have private ones too so I migrated from Bitbucket. Make an account and
create a repository so there is a target to push and pull files from.

Keep the files small! Github doesn’t accept anything larger than 100 Mbs I think. e.g. commit LaTeX source files but
not necessarily the compiled version.

76 Chapter 4. Misc. content

https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
git-scm.com
subversion.apache.org
https://julianmak.github.io/
https://jmak-omfg.github.io/
https://github.com/
https://bitbucket.org/product/

J Mak NEMO notes

4.3.2 Basic commands

The regular commands I use are:

• git add registers files that Git should track and note changes

• git commit -m "SOME DEEP MESSAGE" actually registers the changes made since last commit

• git push [origin master] pushes the commits up to the repository

• git pull pulles the commits from the repository to the local computer

Occasionally I screw something up so I need to do:

• git mv to move the files around by telling Git to still track them

• git rm [--cached] FILES to make git to stop tracking the files (the --cached is so that the physical files are
not removed; leave it out if you actually want to get rid of it)

• git checkout HEAD FILES if I screw up the rm, mv or git rm commands to recover the removed physical
files. HEAD can be replaced by revision number

• git log to check the log of commits and revision numbers

[TO ADD] some branching and merging commands

4.3.3 Access tokens

Git is phasing out password logins on terminal access, so you either have to do two factor authorisation (2FA), use a
SSH key, or a token (there are others presumably). The following bits of scrap code documents how to use a token.

1. log into Git in the browswer, click your profile picture, then Settings -> Developer settings -> Personal access
tokens

2. give your token a descriptive name and give permissions for the access token

3. when you click OK you should get to a screen with that tells you to copy the token (don’t close this page yet!)

4. open terminal and do

git config --global crediential.helper 'cache --timeout=31104000'

where you can change the timeout entry to something that works for you (something large if you want to keep the
token active for longer, units are in seconds). I tried using store on Ubuntu but it doesn’t seem to do anything (store
saves an extra file with the credentials in)

5. go back to webpage, copy the access token, git as normal, but when it asks you for a password, paste the access
token in instead

6. if it worked properly then now you get to bypass the username and password typing until the timeout period

At any point you can revoke the access token on the Git webpage.

4.3. Git commands 77

J Mak NEMO notes

78 Chapter 4. Misc. content

BIBLIOGRAPHY

[AMF11] R. Abernathey, J. Marshall, and D. Ferreira. The dependence of Southern Ocean meridional overturning
on wind stress. J. Phys, Oceanogr., 41:2261–2278, 2011. doi:10.1175/JPO-D-11-023.1.

[MI96] G. Madec and M. Imbard. A global ocean mesh to overcome the North Pole singularity. Clim. Dyn.,
12:381–388, 1996. doi:10.1007/BF00211684.

[MJM15] D. R. Munday, H. L. Johnson, and D. P. Marshall. The role of ocean gateways in the dynamics and sen-
sitivity to wind stress of the early Antarctic Circumpolar Current. Paleoceanography, 30:284–302, 2015.
doi:10.1002/2014PA002675.

[CSS11] D. B. Chelton, M. G. Schlax, and R. M. Samelson. Global observations of nonlinear mesoscale eddies.
Prog. Oceanog., 91:167–216, 2011. doi:10.1016/j.pocean.2011.01.002.

[CdeSzoekeS+98] D. B. Chelton, R. A. de Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz. Geographical
variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28:433–459, 1998.
doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

[EG08] C. Eden and R. J. Greatbatch. Towards a mesoscale eddy closure. Ocean Modell., 20:223–239, 2008.
doi:10.1016/j.ocemod.2007.09.002.

[GM90] P. R. Gent and J. C. McWilliams. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr.,
20:150–155, 1990. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

[Gil82] A. E. Gill. Atmospheric-Ocean Dynamics. Academic Press, 1982.

[KM14] A. Klocker and D. P. Marshall. Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett.,
41:L060001, 2014. doi:10.1002/2014GL060001.

[MAD+22] J. Mak, A. Avdis, T. W. David, H. S. Lee, Y. Na, and F. E. Yan. On constraining the
mesoscale eddy energy dissipation time-scale. J. Adv. Model. Earth Syst., 14:e2022MS003223, 2022.
doi:10.1029/2022MS003223.

[MMMM22] J. Mak, D. P. Marshall, G. Madec, and J. R. Maddison. Acute sensitivity of global ocean circulation and
heat content to eddy energy dissipation time-scale. Geophys. Res. Lett., 49(8):e2021GL097259, 2022.
doi:10.1029/2021GL097259.

[MMB12] D. P. Marshall, J. R. Maddison, and P. S. Berloff. A framework for parameterizing eddy potential vorticity
fluxes. J. Phys. Oceanogr., 42:539–557, 2012. doi:10.1175/JPO-D-11-048.1.

79

https://doi.org/10.1175/JPO-D-11-023.1
https://doi.org/10.1007/BF00211684
https://doi.org/10.1002/2014PA002675
https://doi.org/10.1016/j.pocean.2011.01.002
https://doi.org/10.1175/1520-0485(1998)028\T1\textless {}0433:GVOTFB\T1\textgreater {}2.0.CO;2
https://doi.org/10.1016/j.ocemod.2007.09.002
https://doi.org/10.1175/1520-0485(1990)020\T1\textless {}0150:IMIOCM\T1\textgreater {}2.0.CO;2
https://doi.org/10.1002/2014GL060001
https://doi.org/10.1029/2022MS003223
https://doi.org/10.1029/2021GL097259
https://doi.org/10.1175/JPO-D-11-048.1

	NEMO compilation notes
	NEMO 3.6 (stable) + XIOS 1.0
	XIOS 1.0 (svn v703)
	NEMO 3.6 (svn v6800)

	NEMO 3.7/4.0 + XIOS 2.0
	XIOS 2.0 (svn v1322)
	NEMO 3.7/4.0 (svn v8666)

	NEMO 4.0 (beta) + XIOS 2.5
	XIOS 2.5 (svn v1566)
	NEMO 4.0 (svn v9925)

	NEMO 4.2 + XIOS 2.5
	XIOS 2.5 (svn v2462)
	NEMO 4.2 (Git SHA 216c746957a674552de5bf02c17d22fa37f2a0d4)

	Oxford ARC compilation
	Building NEMO and XIOS
	Running NEMO on the ARC

	HKUST HPC2 compilation
	XIOS (1st try that doesn’t quite work)
	NEMO (1st try that doesn’t quite work)
	zlib, HDF5 and NetCDF4
	Building XIOS and NEMO again
	Running NEMO on the HPC2

	HKUST HPC3 compilation
	Compilers
	XIOS
	NEMO
	Running NEMO on the HPC2

	Other packages
	Anaconda
	Compiling it yourself
	MPICH
	zlib and HDF5
	NetCDF4
	Combined shell script

	Other NEMO notes
	Adding code to NEMO
	Other NEMO packages
	REBUILD_NEMO
	SECTIONS_DIADCT
	WEIGHTS
	DOMAINcfg
	NESTING (AGRIF)

	GYRE: rotated gyre model
	Brief overview and sample outputs
	How to get the model running
	Custom analysis scripts

	ORCA: global configuration
	Brief description
	How to get the model running
	Custom analysis scripts

	UNAGI: custom channel model
	Brief overview and sample outputs
	How to get the model running
	Building the custom model
	Hacking NEMO to get UNAGI

	pyCDFTOOLS

	GEOMETRIC outline
	Advection
	Source
	Dissipation
	Diffusion

	Misc. content
	Python / Anaconda notes
	Anaconda
	Python
	Some Python banana skins

	sphinx notes
	Git commands
	Repositories
	Basic commands
	Access tokens

	Bibliography

